Deterministic Network Exploration by Anonymous Silent Agents with Local Traffic Reports

  • Yoann Dieudonné
  • Andrzej Pelc
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7392)


A team consisting of an unknown number of mobile agents, starting from different nodes of an unknown network, possibly at different times, have to explore the network: every node must be visited by at least one agent and all agents must eventually stop. Agents are anonymous (identical), execute the same deterministic algorithm and move in synchronous rounds along links of the network. They are silent: they cannot send any messages to other agents or mark visited nodes in any way. In the absence of any additional information, exploration with termination of an arbitrary network in this weak model is impossible. Our aim is to solve the exploration problem giving to agents very restricted local traffic reports. Specifically, an agent that is at a node v in a given round, is provided with three bits of information, answering the following questions: Am I alone at v? Did any agent enter v in this round? Did any agent exit v in this round? We show that this small information permits to solve the exploration problem in arbitrary networks. More precisely, we give a deterministic terminating exploration algorithm working in arbitrary networks for all initial configurations that are not perfectly symmetric, i.e., in which there are agents with different views of the network. The algorithm works in time polynomial in the (unknown) size of the network. A deterministic terminating exploration algorithm working for all initial configurations in arbitrary networks does not exist.


exploration deterministic algorithm anonymous mobile agent network graph 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albers, S., Henzinger, M.R.: Exploring unknown environments. SIAM J. Comput. 29, 1164–1188 (2000)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Awerbuch, B., Betke, M., Rivest, R., Singh, M.: Piecemeal graph learning by a mobile robot. In: Proc. 8th Conf. on Comput. Learning Theory, pp. 321–328 (1995)Google Scholar
  3. 3.
    Bender, M.A., Fernandez, A., Ron, D., Sahai, A., Vadhan, S.: The power of a pebble: exploring and mapping directed graphs. In: Proc. STOC 1998, pp. 269–278 (1998)Google Scholar
  4. 4.
    Bender, M.A., Slonim, D.: The power of team exploration: Two robots can learn unlabeled directed graphs. In: Proc. FOCS 1994, pp. 75–85 (1994)Google Scholar
  5. 5.
    Chalopin, J., Das, S., Kosowski, A.: Constructing a Map of an Anonymous Graph: Applications of Universal Sequences. In: Lu, C., Masuzawa, T., Mosbah, M. (eds.) OPODIS 2010. LNCS, vol. 6490, pp. 119–134. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Czyzowicz, J., Kosowski, A., Pelc, A.: How to meet when you forget: Log-space rendezvous in arbitrary graphs. In: Proc. PODC 2010, pp. 450–459 (2010)Google Scholar
  7. 7.
    Das, S., Flocchini, P., Kutten, S., Nayak, A., Santoro, N.: Map construction of unknown graphs by multiple agents. Theoretical Computer Science 385, 34–48 (2007)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Deng, X., Papadimitriou, C.H.: Exploring an unknown graph. Journal of Graph Theory 32, 265–297 (1999)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Dessmark, A., Pelc, A.: Optimal graph exploration without good maps. Theoretical Computer Science 326, 343–362 (2004)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Dieudonné, Y., Pelc, A.: Deterministic gathering of anonymous agents in arbitrary networks (2011),
  11. 11.
    Diks, K., Fraigniaud, P., Kranakis, E., Pelc, A.: Tree exploration with little memory. Journal of Algorithms 51, 38–63 (2004)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Duncan, C.A., Kobourov, S.G., Kumar, V.S.A.: Optimal constrained graph exploration. In: Proc. 12th Ann. ACM-SIAM Symp. on Discrete Algorithms (SODA 2001), pp. 807–814 (2001)Google Scholar
  13. 13.
    Fleischer, R., Trippen, G.: Exploring an Unknown Graph Efficiently. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 11–22. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Fraigniaud, P., Gasieniec, L., Kowalski, D., Pelc, A.: Collective tree exploration. Networks 48, 166–177 (2006)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Frederickson, G.N., Hecht, M.S., Kim, C.E.: Approximation algorithms for some routing problems. SIAM J. Comput. 7, 178–193 (1978)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Gasieniec, L., Pelc, A., Radzik, T., Zhang, X.: Tree exploration with logarithmic memory. In: Proc. SODA 2007, pp. 585–594 (2007)Google Scholar
  17. 17.
    Reingold, O.: Undirected connectivity in log-space. Journal of the ACM 55 (2008)Google Scholar
  18. 18.
    Ta-Shma, A., Zwick, U.: Deterministic rendezvous, treasure hunts and strongly universal exploration sequences. In: Proc. SODA 2007, pp. 599–608 (2007)Google Scholar
  19. 19.
    Yamashita, M., Kameda, T.: Computing on Anonymous Networks: Part I-Characterizing the Solvable Cases. IEEE Trans. Parallel Distrib. Syst. 7, 69–89 (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Yoann Dieudonné
    • 1
  • Andrzej Pelc
    • 2
  1. 1.MISUniversité de Picardie Jules VerneFrance
  2. 2.Département d’informatiqueUniversité du Québec en OutaouaisGatineauCanada

Personalised recommendations