Advertisement

Exponential Lower Bounds and Separation for Query Rewriting

  • Stanislav Kikot
  • Roman Kontchakov
  • Vladimir Podolskii
  • Michael Zakharyaschev
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7392)

Abstract

We establish connections between the size of circuits and formulas computing monotone Boolean functions and the size of first-order and nonrecursive Datalog rewritings for conjunctive queries over OWL 2 QL ontologies. We use known lower bounds and separation results from circuit complexity to prove similar results for the size of rewritings that do not use non-signature constants. For example, we show that, in the worst case, positive existential and nonrecursive Datalog rewritings are exponentially longer than the original queries; nonrecursive Datalog rewritings are in general exponentially more succinct than positive existential rewritings; while first-order rewritings can be superpolynomially more succinct than positive existential rewritings.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Acciarri, A., Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Palmieri, M., Rosati, R.: QuOnto: Querying ontologies. In: Proc. of the 20th Nat. Conf. on Artificial Intelligence (AAAI 2005), pp. 1670–1671 (2005)Google Scholar
  2. 2.
    Alon, N., Boppana, R.: The monotone circuit complexity of Boolean functions. Combinatorica 7(1), 1–22 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Arora, S., Barak, B.: Computational Complexity: A Modern Approach, 1st edn. Cambridge University Press, New York (2009)zbMATHCrossRefGoogle Scholar
  4. 4.
    Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-Lite family and relations. J. of Artificial Intelligence Research (JAIR) 36, 1–69 (2009)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Avigad, J.: Eliminating definitions and Skolem functions in first-order logic. In: Proc. of LICS, pp. 139–146 (2001)Google Scholar
  6. 6.
    Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.(eds.): The Description Logic Handbook: Theory, Implementation and Applications. Cambridge University Press (2003)Google Scholar
  7. 7.
    Benedikt, M., Gottlob, G.: The impact of virtual views on containment. PVLDB 3(1), 297–308 (2010)Google Scholar
  8. 8.
    Borodin, A., von zur Gathen, J., Hopcroft, J.E.: Fast parallel matrix and gcd computations. In: Proc. of FOCS, pp. 65–71 (1982)Google Scholar
  9. 9.
    Calì, A., Gottlob, G., Lukasiewicz, T.: A general Datalog-based framework for tractable query answering over ontologies. In: Proc. of PODS, pp. 77–86 (2009)Google Scholar
  10. 10.
    Calì, A., Gottlob, G., Pieris, A.: Advanced processing for ontological queries. PVLDB 3(1), 554–565 (2010)Google Scholar
  11. 11.
    Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning and efficient query answering in description logics: The DL-Lite family. J. of Automated Reasoning 39(3), 385–429 (2007)zbMATHCrossRefGoogle Scholar
  12. 12.
    Gottlob, G., Orsi, G., Pieris, A.: Ontological queries: Rewriting and optimization. In: Proc. of the IEEE Int. Conf. on Data Engineering, ICDE (2011)Google Scholar
  13. 13.
    Gottlob, G., Schwentick, T.: Rewriting ontological queries into small nonrecursive Datalog programs. In: Proc. of DL 2011, vol. 745. CEUR-WS.org (2011)Google Scholar
  14. 14.
    Jukna, S.: Boolean Function Complexity: Advances and Frontiers. Springer (2012)Google Scholar
  15. 15.
    Kikot, S., Kontchakov, R., Zakharyaschev, M.: On (in)tractability of OBDA with OWL 2 QL. In: Proc. of DL 2011, vol. 745. CEUR-WS.org (2011)Google Scholar
  16. 16.
    Kikot, S., Kontchakov, R., Zakharyaschev, M.: Conjunctive query answering with OWL 2 QL. In: Proc. of the 13th Int. Conf. KR 2012. AAAI Press (2012)Google Scholar
  17. 17.
    Kontchakov, R., Lutz, C., Toman, D., Wolter, F., Zakharyaschev, M.: The combined approach to query answering in DL-Lite. In: Proc. of the 12th Int. Conf. KR 2010. AAAI Press (2010)Google Scholar
  18. 18.
    Lutz, C., Toman, D., Wolter, F.: Conjunctive query answering in the description logic EL using a relational database system. In: Proc. of the 21st Int. Joint Conf. on Artificial Intelligence, IJCAI 2009, pp. 2070–2075 (2009)Google Scholar
  19. 19.
    Pérez-Urbina, H., Motik, B., Horrocks, I.: A comparison of query rewriting techniques for DL-Lite. In: Proc. of DL 2009, vol. 477. CEUR-WS.org (2009)Google Scholar
  20. 20.
    Raz, R., McKenzie, P.: Separation of the monotone NC hierarchy. In: Proc. of FOCS, pp. 234–243 (1997)Google Scholar
  21. 21.
    Raz, R., Wigderson, A.: Monotone circuits for matching require linear depth. J. ACM 39(3), 736–744 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Razborov, A.: Lower bounds for the monotone complexity of some Boolean functions. Dokl. Akad. Nauk SSSR 281(4), 798–801 (1985)MathSciNetGoogle Scholar
  23. 23.
    Rodríguez-Muro, M., Calvanese, D.: Dependencies to optimize ontology based data access. In: Proc. of DL 2011, vol. 745. CEUR-WS.org (2011)Google Scholar
  24. 24.
    Rodríguez-Muro, M., Calvanese, D.: Semantic index: Scalable query answering without forward chaining or exponential rewritings. In: Proc. of the 10th Int. Semantic Web Conf., ISWC (2011)Google Scholar
  25. 25.
    Rodríguez-Muro, M., Calvanese, D.: High performance query answering over DL-Lite ontologies. In: Proc. of the 13th Int. Conf. KR 2012. AAAI Press (2012)Google Scholar
  26. 26.
    Rosati, R., Almatelli, A.: Improving query answering over DL-Lite ontologies. In: Proc. of the 12th Int. Conf. KR 2010. AAAI Press (2010)Google Scholar
  27. 27.
    Tseitin, G.: On the complexity of derivation in propositional calculus. In: Automation of Reasoning 2: Classical Papers on Computational Logic 1967–1970 (1983)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Stanislav Kikot
    • 1
  • Roman Kontchakov
    • 1
  • Vladimir Podolskii
    • 2
  • Michael Zakharyaschev
    • 1
  1. 1.Department of Computer Science and Information SystemsBirkbeck, University of LondonUK
  2. 2.Steklov Mathematical InstituteMoscowRussia

Personalised recommendations