Deciding First Order Properties of Matroids

  • Tomáš Gavenčiak
  • Daniel Král
  • Sang-il Oum
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7392)


Frick and Grohe [J. ACM 48 (2006), 1184–1206] introduced a notion of graph classes with locally bounded tree-width and established that every first order property can be decided in almost linear time in such a graph class. Here, we introduce an analogous notion for matroids (locally bounded branch-width) and show the existence of a fixed parameter algorithm for first order properties in classes of regular matroids with locally bounded branch-width. To obtain this result, we show that the problem of deciding the existence of a circuit of length at most k containing two given elements is fixed parameter tractable for regular matroids.


Graph Property Order Property Graph Class Order Formula Binary Matroid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alon, N., Yuster, R., Zwick, U.: Color-coding: a new method for finding simple paths, cycles and other small subgraphs within large graphs. In: Proc. STOC 1994, pp. 326–335. ACM (1994)Google Scholar
  2. 2.
    Courcelle, B.: The monadic second-order logic of graph I. Recognizable sets of finite graphs. Inform. and Comput. 85, 12–75 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Courcelle, B.: The expression of graph properties and graph transformations in monadic second-order logic. In: Rozenberg, G. (ed.) Handbook of Graph Grammars and Computing by Graph Transformations. Foundations, vol. 1, pp. 313–400. World Scientific (1997)Google Scholar
  4. 4.
    Dawar, A., Grohe, M., Kreutzer, S.: Locally excluding a minor. In: Proc. LICS 2007, pp. 270–279. IEEE Computer Society Press (2007)Google Scholar
  5. 5.
    Downey, R.G., Fellows, M.R., Vardy, A., Whittle, G.: The parametrized complexity of some fundamental problems in coding theory. SIAM J. Comput. 29, 545–570 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Dvořák, Z., Král’, D., Thomas, R.: Deciding first-order properties for sparse graphs. In: Proc. FOCS 2010, pp. 133–142 (2010)Google Scholar
  7. 7.
    Eppstein, D.: Subgraph isomorphism in planar graphs and related problems. J. Graph Algor. Appli. 3, 1–27 (1999)MathSciNetGoogle Scholar
  8. 8.
    Eppstein, D.: Diameter and treewidth in minor-closed graph families. Algorithmica 27, 275–291 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Frick, M., Grohe, M.: Deciding first-order properties of locally tree-decomposable structures. Journal of the ACM 48, 1184–1206 (2001)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Gaifman, H.: On local and non-local properties. In: Proc. of Herbrand Symposium, Logic Colloquium 1981. North-Holland, Amsterdam (1982)Google Scholar
  11. 11.
    Hliněný, P.: On Matroid Properties Definable in the MSO Logic. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 470–479. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Hliněný, P.: A parametrized algorithm for matroid branch-width. SIAM J. Computing 35(2), 259–277 (2005)zbMATHCrossRefGoogle Scholar
  13. 13.
    Hliněný, P.: Branch-width, parse trees and monadic second-order logic for matroids. J. Combin. Theory Ser. B 96, 325–351 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Hliněný, P.: On Matroid Representability and Minor Problems. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 505–516. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Hliněný, P., Oum, S.: Finding branch-decomposition and rank-decomposition. SIAM J. Computing 38, 1012–1032 (2008)zbMATHCrossRefGoogle Scholar
  16. 16.
    Hliněný, P., Whittle, G.: Matroid tree-width. European J. Combin. 27, 1117–1128 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Hliněný, P., Whittle, G.: Addendum to matroid tree-width. European J. Combin. 30, 1036–1044 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Kawarabayashi, K., Thorup, M.: Minimum k-way cut of bounded size is fixed-parameter tractable. In: Proc. FOCS 2011, pp. 160–169. IEEE (2011)Google Scholar
  19. 19.
    Oum, S., Seymour, P.: Approximating clique-width and branch-width. J. Combin. Theory, Ser. B 96, 514–528 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Oxley, J.G.: Matroid theory. Oxford University Press (1992)Google Scholar
  21. 21.
    Peleg, D.: Distance-dependent distributed directories. Info. Computa. 103, 270–298 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Robertson, N., Seymour, P.D.: Graph minors X. Obstructions to tree-decompositions. J. Combin. Theory Ser. B 52, 153–190 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Seymour, P.: Decomposition of regular matroids. J. Combin. Theory Ser. B 28, 305–359 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Seymour, P.: Recognizing graphic matroids. Combinatorica 1, 75–78 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Truemper, K.: A decomposition theory for matroids V. Testing of matrix total unimodularity. J. Combin. Theory Ser. B 49, 241–281 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Truemper, K.: Matroid decomposition. Academic Press (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Tomáš Gavenčiak
    • 1
  • Daniel Král
    • 2
    • 3
  • Sang-il Oum
    • 4
  1. 1.Department of Applied Mathematics, Faculty of Mathematics and PhysicsCharles UniversityPragueCzech Republic
  2. 2.Department of MathematicsUniversity of West BohemiaPilsenCzech Republic
  3. 3.Computer Science Institute, Faculty of Mathematics and PhysicsCharles UniversityPragueCzech Republic
  4. 4.Department of Mathematical SciencesKAISTDaejeonSouth Korea

Personalised recommendations