Advertisement

Regular Languages Are Church-Rosser Congruential

  • Volker Diekert
  • Manfred Kufleitner
  • Klaus Reinhardt
  • Tobias Walter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7392)

Abstract

This paper proves a long standing conjecture in formal language theory. It shows that all regular languages are Church-Rosser congruential. The class of Church-Rosser congruential languages was introduced by McNaughton, Narendran, and Otto in 1988. A language L is Church-Rosser congruential if there exists a finite, confluent, and length-reducing semi-Thue system S such that L is a finite union of congruence classes modulo S. It was known that there are deterministic linear context-free languages which are not Church-Rosser congruential, but on the other hand it was strongly believed that all regular languages are of this form. This paper solves the conjecture affirmatively by actually proving a more general result.

Keywords

String rewriting Church-Rosser system regular language finite monoid finite semigroup local divisor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Book, R., Otto, F.: String-Rewriting Systems. Springer (1993)Google Scholar
  2. 2.
    Buntrock, G., Otto, F.: Growing context-sensitive languages and Church-Rosser languages. Information and Computation 141, 1–36 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Diekert, V., Gastin, P.: First-order definable languages. In: Logic and Automata: History and Perspectives. Texts in Logic and Games, pp. 261–306. Amsterdam University Press (2008)Google Scholar
  4. 4.
    Diekert, V., Kufleitner, M., Reinhardt, K., Walter, T.: Regular languages are Church-Rosser congruential. ArXiv e-prints, arXiv:1202.1148 (February 2012)Google Scholar
  5. 5.
    Diekert, V., Kufleitner, M., Steinberg, B.: The Krohn-Rhodes Theorem and Local Divisors. ArXiv e-prints, arXiv:1111.1585 (November 2011)Google Scholar
  6. 6.
    Diekert, V., Kufleitner, M., Weil, P.: Star-free languages are Church-Rosser congruential. Theoretical Computer Science (2012), doi:10.1016/j.tcs.2012.01.028Google Scholar
  7. 7.
    Jantzen, M.: Confluent String Rewriting. EATCS Monographs on Theoretical Computer Science, vol. 14. Springer (1988)Google Scholar
  8. 8.
    Lothaire, M.: Combinatorics on Words. Encyclopedia of Mathematics and its Applications, vol. 17. Addison-Wesley (1983)Google Scholar
  9. 9.
    McNaughton, R., Narendran, P., Otto, F.: Church-Rosser Thue systems and formal languages. J. ACM 35(2), 324–344 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Narendran, P.: Church-Rosser and related Thue systems. Doctoral dissertation, Dept. of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA (1984)Google Scholar
  11. 11.
    Niemann, G.: Church-Rosser Languages and Related Classes. Kassel University Press, PhD thesis (2002)Google Scholar
  12. 12.
    Niemann, G., Otto, F.: The Church-Rosser languages are the deterministic variants of the growing context-sensitive languages. Inf. Comput. 197, 1–21 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Niemann, G., Waldmann, J.: Some Regular Languages That Are Church-Rosser Congruential. In: Kuich, W., Rozenberg, G., Salomaa, A. (eds.) DLT 2001. LNCS, vol. 2295, pp. 330–339. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Reinhardt, K., Thérien, D.: Some more regular languages that are Church Rosser congruential. In: 13. Theorietag, Automaten und Formale Sprachen, Herrsching, Germany, pp. 97–103 (2003)Google Scholar
  15. 15.
    Woinowski, J.R.: Church-Rosser Languages and Their Application to Parsing Problems. PhD Thesis, TU Darmstadt (2001)Google Scholar
  16. 16.
    Woinowski, J.R.: The context-splittable normal form for Church-Rosser language systems. Inf. Comput. 183, 245–274 (2003)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Volker Diekert
    • 1
  • Manfred Kufleitner
    • 1
  • Klaus Reinhardt
    • 2
  • Tobias Walter
    • 1
  1. 1.Institut für Formale Methoden der InformatikUniversity of StuttgartGermany
  2. 2.Wilhelm-Schickard-Institut für InformatikUniversity of TübingenGermany

Personalised recommendations