Robust Reachability in Timed Automata: A Game-Based Approach

  • Patricia Bouyer
  • Nicolas Markey
  • Ocan Sankur
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7392)

Abstract

Reachability checking is one of the most basic problems in verification. By solving this problem, one synthesizes a strategy that dictates the actions to be performed for ensuring that the target location is reached. In this work, we are interested in synthesizing “robust” strategies for ensuring reachability of a location in a timed automaton; with “robust”, we mean that it must still ensure reachability even when the delays are perturbed by the environment. We model this perturbed semantics as a game between the controller and its environment, and solve the parameterized robust reachability problem: we show that the existence of an upper bound on the perturbations under which there is a strategy reaching a target location is EXPTIME-complete.

Keywords

Winning Strategy Time Automaton Winning State Clock Constraint Greedy Policy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adbeddaïm, Y., Asarin, E., Maler, O.: Scheduling with timed automata. TCS 354(2), 272–300 (2006)CrossRefGoogle Scholar
  2. 2.
    Alur, R., Dill, D.L.: A theory of timed automata. TCS 126(2), 183–235 (1994)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Asarin, E., Maler, O., Pnueli, A., Sifakis, J.: Controller synthesis for timed automata. In: SSSC 1998, pp. 469–474. Elsevier (1998)Google Scholar
  4. 4.
    Bengtsson, J., Yi, W.: Timed Automata: Semantics, Algorithms and Tools. In: Desel, J., Reisig, W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 87–124. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Bouyer, P., Markey, N., Sankur, O.: Robust reachability in timed automata: A game-based approach. Technical Report LSV-12-07, Lab. Specification & Verification, ENS Cachan, France (May 2012)Google Scholar
  6. 6.
    Chatterjee, K., Henzinger, T.A., Prabhu, V.S.: Timed parity games: Complexity and robustness. LMCS 7(4) (2010)Google Scholar
  7. 7.
    De Wulf, M., Doyen, L., Markey, N., Raskin, J.-F.: Robust safety of timed automata. FMSD 33(1-3), 45–84 (2008)MATHGoogle Scholar
  8. 8.
    De Wulf, M., Doyen, L., Raskin, J.-F.: Almost ASAP semantics: From timed models to timed implementations. FAC 17(3), 319–341 (2005)MATHGoogle Scholar
  9. 9.
    Graham, R.L.: Bounds on multiprocessing timing anomalies. SIAM J. Applied Maths 17(2), 416–429 (1969)MATHCrossRefGoogle Scholar
  10. 10.
    Gupta, V., Henzinger, T.A., Jagadeesan, R.: Robust Timed Automata. In: Maler, O. (ed.) HART 1997. LNCS, vol. 1201, pp. 331–345. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  11. 11.
    Henzinger, T.A., Sifakis, J.: The Embedded Systems Design Challenge. In: Misra, J., Nipkow, T., Karakostas, G. (eds.) FM 2006. LNCS, vol. 4085, pp. 1–15. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Kopetz, H.: Real-Time Systems: Design Principles for Distributed Embedded Applications. Springer (2011)Google Scholar
  13. 13.
    Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. Intl J. STTT 1(1-2), 134–152 (1997)MATHGoogle Scholar
  14. 14.
    Markey, N.: Robustness in real-time systems. In: SIES 2011, pp. 28–34. IEEE Comp. Soc. Press (2011)Google Scholar
  15. 15.
    Puri, A.: Dynamical properties of timed automata. DEDS 10(1-2), 87–113 (2000)MATHGoogle Scholar
  16. 16.
    Reineke, J., Wachter, B., Thesing, S., Wilhelm, R., Polian, I., Eisinger, J., Becker, B.: A definition and classification of timing anomalies. In: WCET 2006 (2006)Google Scholar
  17. 17.
    Sankur, O., Bouyer, P., Markey, N.: Shrinking timed automata. In: FSTTCS 2011. LIPIcs, vol. 13, pp. 375–386. LZI (2011)Google Scholar
  18. 18.
    Yovine, S.: Kronos: A verification tool for real-time systems. Intl J. STTT 1(1-2), 123–133 (1997)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Patricia Bouyer
    • 1
  • Nicolas Markey
    • 1
  • Ocan Sankur
    • 1
  1. 1.LSVCNRS & ENS CachanFrance

Personalised recommendations