On Multiple Keyword Sponsored Search Auctions with Budgets

  • Riccardo Colini-Baldeschi
  • Monika Henzinger
  • Stefano Leonardi
  • Martin Starnberger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7392)

Abstract

We study multiple keyword sponsored search auctions with budgets. Each keyword has multiple ad slots with a click-through rate. The bidders have additive valuations, which are linear in the click-through rates, and budgets, which are restricting their overall payments. Additionally, the number of slots per keyword assigned to a bidder is bounded.

We show the following results: (1) We give the first mechanism for multiple keywords, where click-through rates differ among slots. Our mechanism is incentive compatible in expectation, individually rational in expectation, and Pareto optimal. (2) We study the combinatorial setting, where each bidder is only interested in a subset of the keywords. We give an incentive compatible, individually rational, Pareto optimal, and deterministic mechanism for identical click-through rates. (3) We give an impossibility result for incentive compatible, individually rational, Pareto optimal, and deterministic mechanisms for bidders with diminishing marginal valuations.

Keywords

Pareto Optimal Combinatorial Auction Impossibility Result Feasible Allocation Deterministic Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aggarwal, G., Muthukrishnan, S., Pál, D., Pál, M.: General auction mechanism for search advertising. In: WWW 2009: Proceedings of the 18th International Conference on World Wide Web, pp. 241–250. ACM (2009)Google Scholar
  2. 2.
    Ashlagi, I., Braverman, M., Hassidim, A., Lavi, R., Tennenholtz, M.: Position auctions with budgets: Existence and uniqueness. The B.E. Journal of Theoretical Economics 10(1) (2010)Google Scholar
  3. 3.
    Ausubel, L.M.: An efficient ascending-bid auction for multiple objects. American Economic Review 94(5), 1452–1475 (2004)CrossRefGoogle Scholar
  4. 4.
    Ausubel, L.M., Milgrom, P.R.: Ascending auctions with package bidding. Frontiers of Theoretical Economics 1(1), 1019 (2002)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bhattacharya, S., Conitzer, V., Munagala, K., Xia, L.: Incentive compatible budget elicitation in multi-unit auctions. CoRR abs/0904.3501 (2009)Google Scholar
  6. 6.
    Bikhchandani, S., de Vries, S., Schummer, J., Vohra, R.V.: Ascending auctions for integral (poly)matroids with concave nondecreasing separable values. In: Teng, S.H. (ed.) SODA, pp. 864–873. SIAM (2008)Google Scholar
  7. 7.
    Dobzinski, S., Lavi, R., Nisan, N.: Multi-unit auctions with budget limits. In: FOCS, pp. 260–269. IEEE Computer Society (2008)Google Scholar
  8. 8.
    Dobzinski, S., Lavi, R., Nisan, N.: Multi-unit auctions with budget limits (2011), http://ie.technion.ac.il/~ronlavi/papers/budget-constraints.pdf
  9. 9.
    Dütting, P., Henzinger, M., Starnberger, M.: Auctions with heterogeneous items and budget limits (2012)Google Scholar
  10. 10.
    Dütting, P., Henzinger, M., Weber, I.: An expressive mechanism for auctions on the web. In: Srinivasan, S., Ramamritham, K., Kumar, A., Ravindra, M.P., Bertino, E., Kumar, R. (eds.) WWW, pp. 127–136. ACM (2011)Google Scholar
  11. 11.
    Edelman, B., Ostrovsky, M., Schwarz, M.: Internet advertising and the generalized second price auction: Selling billions of dollars worth of keywords. American Economic Review 97(1), 242–259 (2005)CrossRefGoogle Scholar
  12. 12.
    Fiat, A., Leonardi, S., Saia, J., Sankowski, P.: Single valued combinatorial auctions with budgets. In: Shoham, Y., Chen, Y., Roughgarden, T. (eds.) ACM Conference on Electronic Commerce, pp. 223–232. ACM (2011)Google Scholar
  13. 13.
    Fujishige, S., Tamura, A.: A two-sided discrete-concave market with possibly bounded side payments: An approach by discrete convex analysis. Mathematics of Operations Research 32(1), 136–155 (2007)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Goel, G., Mirrokni, V.S., Leme, R.P.: Polyhedral clinching auctions and the adwords polytope. CoRR abs/1201.0404 (2012), to appear in 44th ACM Symposium on Theory of Computing (STOC 2012), New York (May 2012)Google Scholar
  15. 15.
    Lavi, R., May, M.: A Note on the Incompatibility of Strategy-Proofness and Pareto-Optimality in Quasi-Linear Settings with Public Budgets - Working Paper. In: Chen, N., Elkind, E., Koutsoupias, E. (eds.) WINE 2011. LNCS, vol. 7090, p. 417. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    Milgrom, P.: Putting auction theory to work: The simulteneous ascending auction. Journal of Political Economy 108(2), 245–272 (2000)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Nisan, N., Bayer, J., Chandra, D., Franji, T., Gardner, R., Matias, Y., Rhodes, N., Seltzer, M., Tom, D., Varian, H., Zigmond, D.: Google’s Auction for TV Ads. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part II. LNCS, vol. 5556, pp. 309–327. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  18. 18.
    Vickrey, W.: Counterspeculation, auctions, and competitive sealed tenders. The Journal of Finance 16(1), 8–37 (1961)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Riccardo Colini-Baldeschi
    • 1
  • Monika Henzinger
    • 2
  • Stefano Leonardi
    • 1
  • Martin Starnberger
    • 2
  1. 1.Sapienza University of RomeItaly
  2. 2.University of ViennaAustria

Personalised recommendations