A Computationally Grounded Dynamic Logic of Agency, with an Application to Legal Actions

  • Andreas Herzig
  • Tiago de Lima
  • Emiliano Lorini
  • Nicolas Troquard
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7393)

Abstract

In this article, we propose a Dynamic Logic of Propositional Control DL-PC in which the concept of ‘seeing to it that’ (abbreviated stit) as studied by Belnap, Horty and others can be expressed; more precisely, we capture the concept of the so-called Chellas stit theory and the deliberatibe stit theory, as opposed to Belnap’s original achievement stit. In this logic, the sentence ‘group G sees to it that φ’ is defined in terms of dynamic operators: it is paraphrased as ‘group G is going to execute an action now such that whatever actions the agents outside G can execute at the same time, φ is true afterwards’. We also prove that the satisfiability problem is decidable. In the second part of the article we extend DL-PC with operators modeling normative concepts, resulting in a logic DL-PCLeg. In particular, we define the concepts of ‘legally seeing to it that’ and ‘illegally seeing to it that’. We prove that the decidability result for DL-PC transfers to DL-PCLeg.

Keywords

Modal logic dynamic logic action agency propositional control 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ågotnes, T.: Action and knowledge in alternating-time temporal logic. Synthese 149(2), 377–409 (2006)CrossRefGoogle Scholar
  2. 2.
    Ågotnes, T., van der Hoek, W., Wooldridge, M.: Robust normative systems and a logic of norm compliance. Logic Journal of IGPL 18(1), 4–30 (2009)CrossRefGoogle Scholar
  3. 3.
    Alur, R., de Alfaro, L., Henzinger, T.A., Krishnan, S.C., Mang, F.Y.C., Qadeer, S., Rajamani, S.K., Taşiran, S.: Mocha user manual. University of Berkeley Report (2000)Google Scholar
  4. 4.
    Alur, R., Henzinger, T.A.: Reactive modules. Formal Methods in System Design 15(1), 7–48 (1999)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J. of the ACM 49(5), 672–713 (2002)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Balbiani, P., Gasquet, O., Herzig, A., Schwarzentruber, F., Troquard, N.: Coalition games over Kripke semantics. In: Dégremont, C., Keiff, L., Rückert, H. (eds.) Dialogues, Logics and Other Strange Things – Essays in Honour of Shahid Rahman, pp. 11–32. College Publications (2008), http://www.collegepublications.co.uk/tributes/?00007
  7. 7.
    Balbiani, P., Herzig, A., Troquard, N.: Alternative axiomatics and complexity of deliberative stit theories. J. of Philosophical Logic 37(4), 387–406 (2008)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Belnap, N., Perloff, M., Xu, M.: Facing the Future: Agents and Choices in Our Indeterminist World. Oxford University Press (2001)Google Scholar
  9. 9.
    Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge Tracts in Theoretical Computer Science. University Press (2001)Google Scholar
  10. 10.
    Broersen, J.: Modeling attempt and action failure in probabilistic stit logic. In: Walsh, T. (ed.) IJCAI, pp. 792–797. IJCAI/AAAI (2011)Google Scholar
  11. 11.
    Cohen, P.R., Levesque, H.J.: Intention is choice with commitment. Artificial Intelligence 42(2–3), 213–261 (1990)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Herzig, A., Lorini, E.: A dynamic logic of agency I: STIT, abilities and powers. Journal of Logic, Language and Information 19, 89–121 (2010)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Herzig, A., Lorini, E., Moisan, F., Troquard, N.: A dynamic logic of normative systems. In: Walsh, T. (ed.) International Joint Conference on Artificial Intelligence, IJCAI, Barcelona. Morgan Kaufmann Publishers (2011)Google Scholar
  14. 14.
    Herzig, A., Schwarzentruber, F.: Properties of logics of individual and group agency. In: Areces, C., Goldblatt, R. (eds.) Advances in Modal Logic, AiML, Nancy, pp. 133–149. College Publications (2008)Google Scholar
  15. 15.
    Herzig, A., Schwarzentruber, F.: Properties of logics of individual and group agency. In: Areces, C., Goldblatt, R. (eds.) AiML 2008, Nancy, pp. 133–149. College Publications (2008)Google Scholar
  16. 16.
    van der Hoek, W., Walther, D., Wooldridge, M.: On the logic of cooperation and the transfer of control. JAIR 37, 437–477 (2010)MATHGoogle Scholar
  17. 17.
    van der Hoek, W., Wooldridge, M.: On the dynamics of delegation, cooperation and control: a logical account. In: Proc. AAMAS 2005 (2005)Google Scholar
  18. 18.
    van der Hoek, W., Wooldridge, M.: On the logic of cooperation and propositional control. Artificial Intelligence 164(1-2), 81–119 (2005)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Horty, J.: Agency and deontic logic. Oxford University Press (2001)Google Scholar
  20. 20.
    Jamroga, W., van der Hoek, W.: Agents that know how to play. Fundamenta Informaticae 63(2-3), 185–219 (2004)MathSciNetMATHGoogle Scholar
  21. 21.
    Lomuscio, A., Raimondi, F.: mcmas: A Model Checker for Multi-agent Systems. In: Hermanns, H. (ed.) TACAS 2006. LNCS, vol. 3920, pp. 450–454. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  22. 22.
    Miller, J.S., Moss, L.S.: The undecidability of iterated modal relativization. Studia Logica 79(3), 373–407 (2005)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Sergot, M.J., Craven, R.: The Deontic Component of Action Language \(n{\mathcal{C}}+\). In: Goble, L., Meyer, J.-J.C. (eds.) DEON 2006. LNCS (LNAI), vol. 4048, pp. 222–237. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  24. 24.
    Shoham, Y., Tennenholtz, M.: On social laws for artificial agent societies: Off-line design. In: Agre, P.E., Rosenschein, S.J. (eds.) Computational Theories of Interaction and Agency, pp. 597–618. MIT Press, Cambridge (1996)Google Scholar
  25. 25.
    Tiomkin, M.L., Makowsky, J.A.: Propositional dynamic logic with local assignments. Theor. Comput. Sci. 36, 71–87 (1985)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    van Benthem, J., van Eijck, J., Kooi, B.: Logics of communication and change. Information and Computation 204(11), 1620–1662 (2006)MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    van der Hoek, W., Lomuscio, A., Wooldridge, M.: On the complexity of practical ATL model checking. In: Proc. AAMAS 2006 (2005)Google Scholar
  28. 28.
    van der Hoek, W., Wooldridge, M.: Cooperation, knowledge, and time: Alternating-time temporal epistemic logic and its applications. Studia Logica 75, 125–157 (2003)MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    van Ditmarsch, H., Herzig, A., de Lima, T.: From situation calculus to dynamic logic. J. of Logic and Computation 21(2), 179–204 (2011)MATHCrossRefGoogle Scholar
  30. 30.
    van Ditmarsch, H.P., van der Hoek, W., Kooi, B.P.: Dynamic epistemic logic with assignment. In: Dignum, F., Dignum, V., Koenig, S., Kraus, S., Singh, M.P., Wooldridge, M. (eds.) Proc. of AAMAS 2005, pp. 141–148. ACM (2005)Google Scholar
  31. 31.
    van Ditmarsch, H.P., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic. Kluwer Academic Publishers (2007)Google Scholar
  32. 32.
    van Eijck, J.: Making things happen. Studia Logica 66(1), 41–58 (2000)MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Wilm, A.: Determinism and non-determinism in PDL. Theor. Comput. Sci. 87(1), 189–202 (1991)MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Wooldridge, M.: Computationally grounded theories of agency. In: 4th International Conference on Multi-Agent Systems, ICMAS 2000, pp. 13–22. IEEE Computer Society (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Andreas Herzig
    • 1
  • Tiago de Lima
    • 2
  • Emiliano Lorini
    • 1
  • Nicolas Troquard
    • 3
  1. 1.University of Toulouse and CNRS, IRITToulouseFrance
  2. 2.University of Artois and CNRSLensFrance
  3. 3.LOA-ISTC-CNRTrentoItaly

Personalised recommendations