Treatment Status Predicts Differential Prefrontal Cortical Responses to Alcohol and Natural Reinforcer Cues among Alcohol Dependent Individuals

  • Scott C. Bunce
  • Kurtulus Izzetoglu
  • Meltem Izzetoglu
  • Hasan Ayaz
  • Kambiz Pourrezaei
  • Banu Onaral
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7366)

Abstract

This study used functional near-infrared spectroscopy (fNIRs) to test the hypothesis that non-treatment seeking alcohol-dependent participants (NTSA) would show greater response in dorsolateral prefrontal cortex (DLPFC) to alcohol cues than recovering alcoholics (RA; sober 90-180 days) or social drinkers. Opposite predictions were made for responses to natural reward cues. NTSA (n=4), RA (n=6), and social drinkers (n=4) were exposed to alcohol and natural reward cues while being monitored with fNIRs. Results confirmed enhanced responses to alcohol cues among NTSA vs. RA in right middle frontal gyrus. The opposite effect (RA>NTSA) was found in response to natural reward cues. Neural responses to alcohol and natural reward cues were negatively correlated in right DLPFC. Real-time craving ratings were positively correlated with greater neural response to alcohol cues. Differential responses to drug and natural reward cues suggest that a psychological mechanism related to treatment status may modulate drug cue responses in DLPFC.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Koob, G.F., Volkow, N.D.: Neurocircuitry of addiction. Neuropsychopharmacology 35, 217–238 (2009)CrossRefGoogle Scholar
  2. 2.
    Miller, W.R., Hester, R.K.: Inpatient alcoholism treatment: Who benefits? American Psychologist 41, 794 (1986)CrossRefGoogle Scholar
  3. 3.
    Blum, K., Braverman, E.R., Holder, J.M., Lubar, J.F., Monastra, V.J., Miller, D., Lubar, J.O., Chen, T.J.H., Comings, D.E.: Reward deficicency syndrome: A biogenetic model for the diagnosis and treatment of impulsive, addictive, and compulsive behaviors. Journal of Psychoactive Drugs 32(suppl.), i–iv, 1–112 (2000)Google Scholar
  4. 4.
    Franken, I.H.A.: Drug craving and addiction: integrating psychological and neuropsychopharmacological approaches. Progress in Neuro-Psychopharmacology and Biological Psychiatry 27, 563–579 (2003)CrossRefGoogle Scholar
  5. 5.
    Myrick, H., Anton, R.F., Li, X., Henderson, S., Drobes, D., Voronin, K., George, M.S.: Differential brain activity in alcoholics and social drinkers to alcohol cues: relationship to craving. Neuropsychopharmacology 29, 393–402 (2004)CrossRefGoogle Scholar
  6. 6.
    See, R.E.: Neural substrates of conditioned-cued relapse to drug-seeking behavior. Pharmacology Biochemistry and Behavior 71, 517–529 (2002)CrossRefGoogle Scholar
  7. 7.
    Wilson, S.J., Sayette, M.A., Fiez, J.A.: Prefrontal responses to drug cues: a neurocognitive analysis. Nature Neuroscience 7, 211–214 (2004)CrossRefGoogle Scholar
  8. 8.
    Carter, B.L., Tiffany, S.T.: Meta-analysis of cue-reactivity in addiction research. Addiction 94, 327–340 (1999)CrossRefGoogle Scholar
  9. 9.
    Drummond, D.C.: What does cue-reactivity have to offer clinical research? Addiction 95, 129–144 (2000)Google Scholar
  10. 10.
    Goldstein, R.Z., Volkow, N.D.: Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications. Nature Reviews Neuroscience 12, 652–669 (2011)CrossRefGoogle Scholar
  11. 11.
    Goldstein, R.Z., Volkow, N.D.: Drug addiction and its underlying neurobiological basis: neuroimaging evidence for the involvement of the frontal cortex. The American Journal of Psychiatry 159, 1642–1652 (2002)CrossRefGoogle Scholar
  12. 12.
    Tzschentke, T.: The medial prefrontal cortex as a part of the brain reward system. Amino Acids 19, 211–219 (2000)CrossRefGoogle Scholar
  13. 13.
    Yang, Z., Xie, J., Shao, Y.C., Xie, C.M., Fu, L.P., Li, D.J., Fan, M., Ma, L., Li, S.J.: Dynamic neural responses to cue-reactivity paradigms in heroin-dependent users: an fMRI study. Human Brain Mapping 30, 766–775 (2009)CrossRefGoogle Scholar
  14. 14.
    Grant, S., London, E.D., Newlin, D.B., Villemagne, V.L., Liu, X., Contoreggi, C., Phillips, R.L., Kimes, A.S., Margolin, A.: Activation of memory circuits during cue-elicited cocaine craving. Proceedings of the National Academy of Sciences 93, 12040–12045 (1996)CrossRefGoogle Scholar
  15. 15.
    Langleben, D., Ruparel, K., Elman, I., Busch-Winokur, S., Pratiwadi, R., Loughead, J., O’Brien, C., Childress, A.: Acute effect of methadone maintenance dose on brain fMRI response to heroin-related cues. American Journal of Psychiatry 165, 390–394 (2008)CrossRefGoogle Scholar
  16. 16.
    Botelho, M.F., Relvas, J.S., Abrantes, M., Cunha, M.J., Marques, T.R., Rovira, E., Fontes Ribeiro, C.A., Macedo, T.: Brain blood flow SPET imaging in heroin abusers. Annals of the New York Academy of Sciences 1074, 466–477 (2006)CrossRefGoogle Scholar
  17. 17.
    Bunce, S.C., Izzetoglu, M., Izzetoglu, K., Onaral, B., Pourrezaei, K.: Functional near-infrared spectroscopy. IEEE Engineering in Medicine and Biology Magazine 25, 54–62 (2006)CrossRefGoogle Scholar
  18. 18.
    Boas, D.A., Gaudette, T., Strangman, G., Cheng, X., Marota, J.J.A., Mandeville, J.B.: The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics. Neuroimage 13, 76–90 (2001)CrossRefGoogle Scholar
  19. 19.
    Chance, B., Zhuang, Z., UnAh, C., Alter, C., Lipton, L.: Cognition-activated low-frequency modulation of light absorption in human brain. Proceedings of the National Academy of Sciences 90, 3770–3774 (1993)CrossRefGoogle Scholar
  20. 20.
    Chance, B., Anday, E., Nioka, S., Zhou, S., Hong, L., Worden, K., Li, C., Murray, T., Ovetsky, Y., Pidikiti, D.: A novel method for fast imaging of brain function, non-invasively, with light. Optics Express 2, 411–423 (1998)CrossRefGoogle Scholar
  21. 21.
    Obrig, H., Villringer, A.: Near-infrared spectroscopy in functional activation studies. Can NIRS demonstrate cortical activation? Advances in Experimental Medicine Biology 413, 113–127 (1997)Google Scholar
  22. 22.
    Villringer, A., Chance, B.: Non-invasive optical spectroscopy and imaging of human brain function. Trends in Neurosciences 20, 435–442 (1997)CrossRefGoogle Scholar
  23. 23.
    Miller, W.R.: Form 90: A Structured Assessment Interview for Drinking and Related Behaviors (Test Manual). NIAAA Project MATCH Monograph Series, vol. 5, NIH Publication No. 96-4004. National Institute on Alcohol Abuse and Alcoholism, Bethesda (1996)Google Scholar
  24. 24.
    Emrick, C.D.: A review of psychologically oriented treatment of alcoholism: I. The use and interrelationships of outcome criteria and drinking behavior following treatment. Quarterly Journal of Studies on Alcohol 35, 523–549 (1974)Google Scholar
  25. 25.
    Hunt, W.A., Barnett, L.W., Branch, L.G.: Relapse rates in addiction programs. Journal of Clinical Psychology 27, 455–456 (1971)CrossRefGoogle Scholar
  26. 26.
    Sullivan, J.T., Sykora, K., Schneiderman, J., Naranjo, C.A., Sellers, E.M.: Assessment of Alcohol Withdrawal: the revised clinical institute withdrawal assessment for alcohol scale (CIWA-Ar). British Journal of Addiction 84, 1353–1357 (1989)CrossRefGoogle Scholar
  27. 27.
    Jasper, H.: Report of the committee on methods of clinical examination in electroencephalography. Electroencephalogr. Clin. Neurophysiol. 10, 370–375 (1958)CrossRefGoogle Scholar
  28. 28.
    Okamoto, M., Dan, H., Sakamoto, K., Takeo, K., Shimizu, K., Kohno, S., Oda, I., Isobe, S., Suzuki, T., Kohyama, K.: Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10-20 system oriented for transcranial functional brain mapping. Neuroimage 21, 99–111 (2004)CrossRefGoogle Scholar
  29. 29.
    Heinz, A., Wrase, J., Kahnt, T., Beck, A., Bromand, Z., Grüsser, S.M., Kienast, T., Smolka, M.N., Flor, H., Mann, K.: Brain activation elicited by affectively positive stimuli is associated with a lower risk of relapse in detoxified alcoholic subjects. Alcoholism: Clinical and Experimental Research 31, 1138–1147 (2007)CrossRefGoogle Scholar
  30. 30.
    Breiner, M., Stritzke, W., Lang, A., Patrick, C.: The Normative Appetitive Picture System (Photographic Slides). Florida State University, Tallahassee (1995)Google Scholar
  31. 31.
    Ayaz, H., Shewokis, P.A., Curtin, A., Izzetoglu, M., Izzetoglu, K., Onaral, B.: Using MazeSuite and functional near infrared spectroscopy to study learning in spatial navigation. J. Vis. Exp. 56, e3443 (2011), doi:10.3791/3443Google Scholar
  32. 32.
    Ayaz, H., Shewokis, P.A., Bunce, S., Onaral, B.: An optical brain computer interface for environmental control. In: Conf. Proc. IEEE Eng. Med. Biol. Soc., pp. 6327–6330 (2011)Google Scholar
  33. 33.
    Sundsten, J.W., Mulligan, K.: Neuroanatomy interactive syllabus. University of Washington (1998), http://www9.biostr.washington.edu/da.html
  34. 34.
    George, M.S., Anton, R.F., Bloomer, C., Teneback, C., Drobes, D.J., Lorberbaum, J.P., Nahas, Z., Vincent, D.J.: Activation of prefrontal cortex and anterior thalamus in alcoholic subjects on exposure to alcohol-specific cues. Archives of General Psychiatry 58, 345–352 (2001)CrossRefGoogle Scholar
  35. 35.
    Grüsser, S.M., Wrase, J., Klein, S., Hermann, D., Smolka, M.N., Ruf, M., Weber-Fahr, W., Flor, H., Mann, K., Braus, D.F.: Cue-induced activation of the striatum and medial prefrontal cortex is associated with subsequent relapse in abstinent alcoholics. Psychopharmacology 175, 296–302 (2004)CrossRefGoogle Scholar
  36. 36.
    Janes, A.C., Pizzagalli, D.A., Richardt, S.: Brain reactivity to smoking cues prior to smoking cessation predicts ability to maintain tobacco abstinence. Biological Psychiatry 67, 722–729 (2010)CrossRefGoogle Scholar
  37. 37.
    Paulus, M.P., Tapert, S.F., Schuckit, M.A.: Neural activation patterns of methamphetamine-dependent subjects during decision making predict relapse. Archives of General Psychiatry 62, 761–768 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Scott C. Bunce
    • 1
    • 2
    • 3
  • Kurtulus Izzetoglu
    • 2
    • 3
  • Meltem Izzetoglu
    • 2
    • 3
  • Hasan Ayaz
    • 2
    • 3
  • Kambiz Pourrezaei
    • 2
    • 3
  • Banu Onaral
    • 2
    • 3
  1. 1.Penn State Hershey Medical Center and Penn State College of MedicineHersheyUSA
  2. 2.School of Biomedical Engineering, Sciences, and Health SystemsDrexel UniversityPhiladelphiaUSA
  3. 3.Cognitive Neuroengineering and Quantitative Experimental Research, (CONQUER) CollaborativeDrexel UniversityPhiladelphiaUSA

Personalised recommendations