Prediction of Telephone User Attributes Based on Network Neighborhood Information

  • Carlos Herrera-Yagüe
  • Pedro J. Zufiria
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7376)


This paper addresses the problem of predicting several attributes corresponding to telephone users, based on information gathered from the network which defines their communication patterns. Two approaches are compared which are grounded on machine learning techniques: the initial approach makes use of link information between two users, looking for the correlation between user attributes and communication patterns. The second approach exploits the network structure underlying the communication behavior of the user under study. Simulations show that the learning machines are able to extract network information to improve the attribute prediction capabilities.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Reviews of Modern Physics 74(1), 47 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Davidson, E., Levin, M.: Gene regulatory networks. Proceedings of the National Academy of Sciences of the United States of America 102(14), 4935 (2005)CrossRefGoogle Scholar
  3. 3.
    Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the internet topology. ACM SIGCOMM Computer Communication Review 29, 251–262 (1999)CrossRefGoogle Scholar
  4. 4.
    Gimeno, M., Villamia, B., Suarez, V.: eEspaña, Informe anual sobre el desarrollo de la sociedad de la información en España. Fundación Orange (2011)Google Scholar
  5. 5.
    Granovetter, M.S.: The strength of weak ties. American Journal of Sociology, 1360–1380 (1973)Google Scholar
  6. 6.
    Hidalgo, C.: The dynamics of a mobile phone network. Physica A: Statistical Mechanics and its Applications 387(12), 3017–3024 (2008)CrossRefGoogle Scholar
  7. 7.
    McPherson, M., Smith-Lovin, L., Cook, J.M.: Birds of a feather: Homophily in social networks. Annual Review of Sociology, 415–444 (2001)Google Scholar
  8. 8.
    Miritello, G., Moro, E., Lara, R.: Dynamical strength of social ties in information spreading. Physical Review E 83(4), 3–6 (2011)CrossRefGoogle Scholar
  9. 9.
    Newman, M.E.J.: The structure and function of complex networks. SIAM Review 45(2), 58 (2003)CrossRefGoogle Scholar
  10. 10.
    Onnela, J.-P., Saramaki, J., Hyvonen, J., Szabo, G., Menezes, A.D., Kaski, K., Barabasi, A.-L., Kertesz, J.: Analysis of a large-scale weighted network of one-to-one human communication. New Journal of Physics 9(6), 25 (2007)CrossRefGoogle Scholar
  11. 11.
    Rybski, D., Buldyrev, S.V., Havlin, S., Liljeros, F., Makse, H.: Scaling laws of human interaction activity. Proceedings of the National Academy of Sciences of the United States of America 106(31), 12640–12645 (2009)CrossRefGoogle Scholar
  12. 12.
    Schwartz, M.: Telecommunication networks: protocols, modeling and analysis. Addison-Wesley Longman Publishing Co., Inc. (1986)Google Scholar
  13. 13.
    Stoica, A., Couronne, T., Beuscart, J.S.: To be a star is not only metaphoric: from popularity to social linkage. In: Proc. ICWSM 2010 4th. Intl. Conf. Weblogs & Social Media (2010)Google Scholar
  14. 14.
    Stoica, A., Smoreda, Z., Prieurb, C., Guillaumec, J.L.: Age, gender and communication networks. In: Proceedings of the Workshop on the Analysis of Mobile Phone Networks, Satellite Workshop to NetSci. 2010 (2010)Google Scholar
  15. 15.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small-world’ networks. Nature 393(6684), 440–442 (1998)CrossRefGoogle Scholar
  16. 16.
    Zhao, Q., Tian, Y., He, Q., Oliver, N., Jin, R., Lee, W.C.: Communication motifs: a tool to characterize social communications. In: Proceedings of the 19th ACM International Conference on Information and Knowledge Management, pp. 1645–1648. ACM (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Carlos Herrera-Yagüe
    • 1
  • Pedro J. Zufiria
    • 1
  1. 1.Depto. Matemática Aplicada a las Tecnologías de la Información, ETSI TelecomunicaciónUniversidad Politécnica de MadridSpain

Personalised recommendations