A Pilot Study on Saccadic Adaptation Experiments with Robots

  • Eris Chinellato
  • Marco Antontelli
  • Angel P. del Pobil
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7375)


Despite the increasing mutual interest, robotics and cognitive sciences are still lacking common research grounds and comparison methodologies, for a more efficient use of modern technologies in aid of neuroscience research. We employed our humanoid robot for reproducing experiments on saccadic adaptation, on the same experimental setup used for human studies. The behavior of the robot, endowed with advanced sensorimotor skills and high autonomy in its interaction with the surrounding environment, is based on a model of cortical sensorimotor functions. We show how the comparison of robot experimental results with human and computational modeling data allows researchers to validate and assess alternative models of psychophysical phenomena.


Humanoid Robot Radial Basis Function Network Movement Amplitude Real Robot Psychophysical Experiment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Antonelli, M., Chinellato, E., del Pobil, A.P.: Implicit mapping of the peripersonal space of a humanoid robot. In: IEEE Symposium Series on Computational Intelligence, SSCI (2011)Google Scholar
  2. 2.
    Bosco, A., Breveglieri, R., Chinellato, E., Galletti, C., Fattori, P.: Reaching activity in the medial posterior parietal cortex of monkeys is modulated by visual feedback. J. Neurosci 30(44), 14773–14785 (2010)CrossRefGoogle Scholar
  3. 3.
    Cheng, G., Hyon, S.-H., Morimoto, J., Ude, A., Colvin, G., Scroggin, W., Jacobsen, S.C.: Cb: A humanoid research platform for exploring neuroscience. In: Proc. 6th IEEE-RAS Int. Humanoid Robots Conf., pp. 182–187 (2006)Google Scholar
  4. 4.
    Chinellato, E., Antonelli, M., Grzyb, B.J., del Pobil, A.P.: Implicit sensorimotor mapping of the peripersonal space by gazing and reaching. IEEE Transactions on Autonomous Mental Development 3(1), 43–53 (2011)CrossRefGoogle Scholar
  5. 5.
    Chinellato, E., del Pobil, A.P.: fRI, functional robotic imaging: Visualizing a robot brain. In: IEEE International Conference on Distributed Human-Machine Systems, DHMS, Athens, Greece (March 2008)Google Scholar
  6. 6.
    Chinellato, E., Grzyb, B.J., Marzocchi, N., Bosco, A., Fattori, P., del Pobil, A.P.: The dorso-medial visual stream: from neural activation to sensorimotor interaction. Neurocomputing 74(8), 1203–1212 (2010)CrossRefGoogle Scholar
  7. 7.
    Collins, T., Dore-Mazars, K., Lappe, M.: Motor space structures perceptual space: Evidence from human saccadic adaptation. Brain Res. 1172, 32–39 (2007)CrossRefGoogle Scholar
  8. 8.
    Culham, J.C.: Functional neuroimaging: Experimental design and analysis. In: Cabeza, R., Kingstone, A. (eds.) Handbook of Functional Neuroimaging of Cognition, pp. 53–82. MIT Press, Cambridge (2006)Google Scholar
  9. 9.
    Dario, P., Carrozza, M.C., Guglielmelli, E., Laschi, C., Menciassi, A., Micera, S., Vecchi, F.: Robotics as a future and emerging technology: biomimetics, cybernetics, and neuro-robotics in European projects. IEEE Robotics & Automation Magazine 12(2), 29–45 (2005)CrossRefGoogle Scholar
  10. 10.
    Kawato, M.: Robotics as a tool for neuroscience - cerebellar internal models for robotics and cognition. In: Proceedings of the 9th International Symposium on Robotics Research, pp. 321–328 (2000)Google Scholar
  11. 11.
    Lappe, M.: What is adapted in saccadic adaptation? J. Physiol. 587(pt. 1), 5 (2009)CrossRefGoogle Scholar
  12. 12.
    McLaughlin, S.: Parametric adjustment in saccadic eye movements. Percept. Psychophys. 2, 359–362 (1967)CrossRefGoogle Scholar
  13. 13.
    Nanayakkara, T., Shadmehr, R.: Saccade adaptation in response to altered arm dynamics. Journal of Neurophysiology 90(6), 4016–4021 (2003)CrossRefGoogle Scholar
  14. 14.
    Prescott, T.J., Redgrave, P., Gurney, K.: Layered control architectures in robots and vertebrates. Adaptive Behavior 7(1), 99–127 (1999)CrossRefGoogle Scholar
  15. 15.
    Salinas, E., Thier, P.: Gain modulation: a major computational principle of the central nervous system. Neuron 27(1), 15–21 (2000)CrossRefGoogle Scholar
  16. 16.
    Schnier, F., Zimmermann, E., Lappe, M.: Adaptation and mislocalization fields for saccadic outward adaptation in humans. Journal of Eye Movement Research 3(3), 1–18 (2010)Google Scholar
  17. 17.
    Tsagarakis, N.G., Metta, G., Sandini, G., Vernon, D., Beira, R., Becchi, F., Righetti, L., Santos-Victor, J., Ijspeert, A.J., Carrozza, M.C., Caldwell, D.G.: icub: the design and realization of an open humanoid platform for cognitive and neuroscience research. Advanced Robotics 21(10), 1151–1175 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Eris Chinellato
    • 1
  • Marco Antontelli
    • 2
  • Angel P. del Pobil
    • 2
  1. 1.Imperial College LondonLondonUK
  2. 2.Jaume I UniversityCastellón de la PlanaSpain

Personalised recommendations