The Dynamical Modeling of Cognitive Robot-Human Centered Interaction

  • Mikhail I. Rabinovich
  • Pablo Varona
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7375)

Abstract

In this paper we formulate basic principles of cognitive human-robot team dynamics following lessons from experimental neuroscience: 1) the cognitive team dynamics in a changing complex environment is transient and can be considered as a temporal sequence of metastable states; 2) the human mental resources –attention and working memory capacity that are available for the processing of sensory and robot generated information in relation to a specific goal– are finite; 3) the interactive cognitive team activity is robust against noise and at the same time sensitive to information from the environment. We suggest a basic dynamical model that describes the evolution of human cognitive and emotion modes and robot information modes together with the dynamics of mental resources. Using this model we have analyzed the team’s dynamical instability, introduced the dynamical description of the information flow capacity, and analyzed the features of the binding dynamics of information flows.

Keywords

sequential transient dynamics internal representation human-robot interaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Goodrich, M.A., Schultz, A.C.: Human-robot interaction: a survey. Found. Trends Hum.-Comput. Interact. 1, 203–275 (2007)Google Scholar
  2. 2.
    Goodrich, M.A., Pendleton, B., Sujit, P.B., Pinto, J.: Toward human interaction with bio-inspired robot teams. In: 2011 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 2859–2864 (2011)Google Scholar
  3. 3.
    Johnson, M., Bradshaw, J.M., Feltovich, P.J., Jonker, C.M., van Riemsdijk, B., Sierhuis, M.: The Fundamental Principle of Coactive Design: Interdependence Must Shape Autonomy. In: De Vos, M., Fornara, N., Pitt, J.V., Vouros, G. (eds.) COIN 2010. LNCS, vol. 6541, pp. 172–191. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Rabinovich, M.I., Varona, P.: Robust transient dynamics and brain functions. Front Comput. Neurosci. 5, 24 (2011)CrossRefGoogle Scholar
  5. 5.
    Rabinovich, M.I., Afraimovich, V.S., Bick, C., Varona, P.: Information flow dynamics in the brain. Physics of Life Reviews 9, 51–73 (2012)CrossRefGoogle Scholar
  6. 6.
    Rabinovich, M.I., Afraimovich, V.S., Bick, C., Varona, P.: Instability, semantic dynamics and modeling brain data. Physics of Life Reviews 9, 80–83 (2012)CrossRefGoogle Scholar
  7. 7.
    Rabinovich, M.I., Huerta, R., Varona, P., Afraimovich, V.S.: Transient cognitive dynamics, metastability, and decision making. PLoS Comput. Biol. 4, e1000072 (2008)Google Scholar
  8. 8.
    Rabinovich, M., Huerta, R., Laurent, G.: Neuroscience. Transient dynamics for neural processing. Science 321, 48–50 (2008)CrossRefGoogle Scholar
  9. 9.
    Rabinovich, M.I., Friston, K., Varona, P. (eds.): Principles of brain dynamics: global state interactions. MIT Press, Cambridge (2012)Google Scholar
  10. 10.
    Pecora, L.M., Carroll, T.L., Johnson, G.A., Mar, D.J., Heagy, J.F.: Fundamentals of synchronization in chaotic systems, concepts, and applications. Chaos 7, 520–543 (1997)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Freeman, W.J.: Comparison of Brain Models for Active vs. Passive Perception. Information Sciences 116, 97–107 (1999)CrossRefGoogle Scholar
  12. 12.
    Jirsa, V.K., Kelso, J.A.S. (eds.): Coordination Dynamics: Issues and Trends. Springer (2004)Google Scholar
  13. 13.
    Massaro, D.W., Friedman, D.: Models of integration given multiple sources of information. Psychol. Rev. 97, 225–252 (1990)CrossRefGoogle Scholar
  14. 14.
    Bongard, M.M.: Pattern Recognition (Original publication: Problema uznavania, Nauka Press, Moscow, 1967), Rochelle Park, N.J (1970)Google Scholar
  15. 15.
    Howard, R.A.: Information Value Theory. IEEE Transactions on Systems, Science and Cybernetics 2, 22–26 (1966)CrossRefGoogle Scholar
  16. 16.
    Madl, T., Baars, B.J., Franklin, S.: The timing of the cognitive cycle. PLoS One 6, e14803 (2011)Google Scholar
  17. 17.
    Rabinovich, M.I., Huerta, R., Varona, P.: Heteroclinic synchronization: ultrasubharmonic locking. Phys. Rev. Lett. 96, 141001 (2006)CrossRefGoogle Scholar
  18. 18.
    Rabinovich, M.I., Afraimovich, V.S., Varona, P.: Heteroclinic Binding. Dynamical Systems: An International Journal 25, 433–442 (2010)MathSciNetMATHGoogle Scholar
  19. 19.
    Baker, G.L., Gollub, J.B.: Chaotic Dynamics: An Introduction. Cambridge University Press (1996)Google Scholar
  20. 20.
    Tononi, G.: Consciousness as integrated information: a provisional manifesto. Biol. Bull. 215, 216–242 (2008)CrossRefGoogle Scholar
  21. 21.
    Perlovsky, I.L.: Toward physics of the mind: Concepts, emotions, consciousness, and symbols. Physics of Life Reviews 3, 23–55 (2006)CrossRefGoogle Scholar
  22. 22.
    Maybin, J., Swann, J.: Everyday Creativity in Language: Textuality, Contextuality, and Critique. Applied Linguistics 28, 497–517 (2007)CrossRefGoogle Scholar
  23. 23.
    Ijspeert, A.J.: Central pattern generators for locomotion control in animals and robots: a review. Neural Netw. 21, 642–653 (2008)CrossRefGoogle Scholar
  24. 24.
    Liu, C., Chen, Q., Wang, D.: CPG-inspired workspace trajectory generation and adaptive locomotion control for quadruped robots. IEEE Trans. Syst. Man Cybern. B Cybern. 41, 867–880 (2011)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Herrero-Carrón, F., Rodríguez, F.B., Varona, P.: Bio-inspired design strategies for central pattern generator control in modular robotics. Bioinspir. Biomim. 6, 16006 (2011)CrossRefGoogle Scholar
  26. 26.
    Arena, P., Fortuna, L., Lombardo, D., Patanè, L., Velarde, M.G.: The winnerless competition paradigm in cellular nonlinear networks: Models and applications. Int. J. Circuit Theory Appl. 37, 505–528 (2009)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Mikhail I. Rabinovich
    • 1
  • Pablo Varona
    • 2
  1. 1.BioCircuits InstituteUniversity of California San DiegoLa JollaUSA
  2. 2.Grupo de Neurocomputación Biológica, Dpto. de Ingeniería Informática, Escuela Politécnica SuperiorUniversidad Autónoma de MadridMadridSpain

Personalised recommendations