The Emergence of Action Sequences from Spatial Attention: Insight from Rodent-Like Robots

  • Ben Mitchinson
  • Martin J. Pearson
  • Anthony G. Pipe
  • Tony J. Prescott
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7375)

Abstract

Animal behaviour is rich, varied, and smoothly integrated. One plausible model of its generation is that behavioural sub-systems compete to command effectors. In small terrestrial mammals, many behaviours are underpinned by foveation, since important effectors (teeth, tongue) are co-located with foveal sensors (microvibrissae, lips, nose), suggesting a central role for foveal selection and foveation in generating behaviour. This, along with research on primate visual attention, inspires an alternative hypothesis, that integrated behaviour can be understood as sequences of foveations with selection being amongst foveation targets based on their salience. Here, we investigate control architectures for a biomimetic robot equipped with a rodent-like vibrissal tactile sensing system, explicitly comparing a salience map model for action guidance with an earlier model implementing behaviour selection. Both architectures generate life-like action sequences, but in the salience map version higher-level behaviours are an emergent consequence of following a shifting focus of attention.

Keywords

brain-based robotics action selection tactile sensing behavioural integration saliency map 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Prescott, T.: Forced moves or good tricks in design space? landmarks in the evolution of neural mechanisms for action selection. Adaptive Behavior 15(1), 9–31 (2007)CrossRefGoogle Scholar
  2. 2.
    Brooks, R.: Coherent behavior from many adaptive processes. From Animals to Animats 3, 22–29 (1994)Google Scholar
  3. 3.
    Mitchinson, B., Pearson, M.J., Pipe, A.G., Prescott, T.J.: Biomimetic robots as scientific models: A view from the whisker tip. In: Krichmar, J.L., Wagatsuma, H. (eds.) Neuromorphic and Brain-Based Robots, pp. 23–57. Cambridge University Press (2010)Google Scholar
  4. 4.
    Brooks, R.A.: A robot that walks; emergent behaviors from a carefully evolved network. Neural Computation 1, 253–262 (1989)CrossRefGoogle Scholar
  5. 5.
    Redgrave, P., Prescott, T.J., Gurney, K.: The basal ganglia: a vertebrate solution to the selection problem? Neuroscience 89(4), 1009–1023 (1999)CrossRefGoogle Scholar
  6. 6.
    Gandhi, N.J., Katnani, H.A.: Motor functions of the superior colliculus. Annu. Rev. Neurosci. 34, 205–231 (2011)CrossRefGoogle Scholar
  7. 7.
    Itti, L., Koch, C.: Computational modelling of visual attention. Nature Reviews Neuroscience 2, 194–203 (2001)CrossRefGoogle Scholar
  8. 8.
    Posner, M.I., Peterson, S.E.: The attention system of the human brain. Annual Review of Neuroscience 13, 25–42 (1990)CrossRefGoogle Scholar
  9. 9.
    Cisek, P., Kalaska, J.: Neural mechanisms for interacting with a world full of action choices. Annual Review of Neuroscience 33, 269–298 (2010)CrossRefGoogle Scholar
  10. 10.
    Mitchinson, B., Grant, R.A., Arkley, K., Rankov, V., Perkon, I., Prescott, T.J.: Active vibrissal sensing in rodents and marsupials. Phil. Trans. R. Soc. B 366, 3037–3048 (2011)CrossRefGoogle Scholar
  11. 11.
    Pearson, M.J., Mitchinson, B., Sullivan, J.C., Pipe, A.G., Prescott, T.J.: Biomimetic vibrissal sensing for robots. Phil. Trans. R. Soc. B 366, 3085–3096 (2011)CrossRefGoogle Scholar
  12. 12.
    Brecht, M., Preilowski, B., Merzenich, M.M.: Functional architecture of the mystacial vibrissae. Behavioural Brain Research 84, 81–97 (1997)CrossRefGoogle Scholar
  13. 13.
    Anjum, F., Turni, H., Mulder, P.G., van der Burg, J., Brecht, M.: Tactile guidance of prey capture in etruscan shrews. Proc. Natl. Acad. Sci. USA 103(44), 16544–16549 (2006)CrossRefGoogle Scholar
  14. 14.
    Mitchinson, B., Pearson, M., Melhuish, C., Prescott, T.J.: A Model of Sensorimotor Coordination in the Rat Whisker System. In: Nolfi, S., Baldassarre, G., Calabretta, R., Hallam, J.C.T., Marocco, D., Meyer, J.-A., Miglino, O., Parisi, D. (eds.) SAB 2006. LNCS (LNAI), vol. 4095, pp. 77–88. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Mitchinson, B., Martin, C.J., Grant, R.A., Prescott, T.J.: Feedback control in active sensing: rat exploratory whisking is modulated by environmental contact. Royal Society Proceedings B 274(1613), 1035–1041 (2007)CrossRefGoogle Scholar
  16. 16.
    Grant, R.A., Mitchinson, B., Fox, C.W., Prescott, T.J.: Active touch sensing in the rat: Anticipatory and regulatory control of whisker movements during surface exploration. J. Neurophys. 101, 862–874 (2009)CrossRefGoogle Scholar
  17. 17.
    Kleinfeld, D., Berg, R.W., O’Connor, S.M.: Anatomical loops and their electrical dynamics in relation to whisking by rat. Somatosens Mot. Res. 16(2), 69–88 (1999)CrossRefGoogle Scholar
  18. 18.
    Pearson, M.J., Mitchinson, B., Welsby, J., Pipe, T., Prescott, T.J.: SCRATCHbot: Active Tactile Sensing in a Whiskered Mobile Robot. In: Doncieux, S., Girard, B., Guillot, A., Hallam, J., Meyer, J.-A., Mouret, J.-B. (eds.) SAB 2010. LNCS, vol. 6226, pp. 93–103. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  19. 19.
    Sullivan, J., Mitchinson, B., Pearson, M., Evans, M., Lepora, N., Fox, C., Melhuish, C., Prescott, T.J.: Tactile discrimination using active whisker sensors. IEEE Sensors Journal 12(2), 350–362 (2011)CrossRefGoogle Scholar
  20. 20.
    Fox, C.W., Evans, M.H., Lepora, N.F., Pearson, M., Ham, A., Prescott, T.J.: CrunchBot: A Mobile Whiskered Robot Platform. In: Groß, R., Alboul, L., Melhuish, C., Witkowski, M., Prescott, T.J., Penders, J. (eds.) TAROS 2011. LNCS, vol. 6856, pp. 102–113. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  21. 21.
    Pearson, M.J., Pipe, A.G., Melhuish, C., Mitchinson, B., Prescott, T.J.: Whiskerbot: A robotic active touch system modeled on the rat whisker sensory system. Adaptive Behaviour 15(3), 223–240 (2007)CrossRefGoogle Scholar
  22. 22.
    Prescott, T.J., Gonzalez, F.M.M., Gurney, K., Humphries, M.D., Redgrave, P.: A robot model of the basal ganglia: Behavior and intrinsic processing. Neural Netw. 19(1), 31–61 (2006)MATHCrossRefGoogle Scholar
  23. 23.
    McHaffie, J.G., Stein, B.E.: Eye movements evoked by electrical stimulation in the superior colliculus of rats and hamsters. Brain Research 247, 243–253 (1982)CrossRefGoogle Scholar
  24. 24.
    Sahibzada, N., Dean, P., Redgrave, P.: Movements resembling orientation or avoidance elicited by electrical stimulation of the superior colliculus in rats. J. Neurosci. 6(3), 723–733 (1986)Google Scholar
  25. 25.
    Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. J. Artificial Intelligence Research 4, 237–285 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ben Mitchinson
    • 1
  • Martin J. Pearson
    • 2
  • Anthony G. Pipe
    • 2
  • Tony J. Prescott
    • 1
  1. 1.ATLAS Research GroupThe University of SheffieldUK
  2. 2.Bristol Robotics LaboratoryBristolUK

Personalised recommendations