Advertisement

A Conserved Biomimetic Control Architecture for Walking, Swimming and Flying Robots

  • Joseph Ayers
  • Daniel Blustein
  • Anthony Westphal
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7375)

Abstract

Simple animals adapt with impunity to the most challenging of conditions without training or supervision. Their behavioral repertoire is organized into a layered set of exteroceptive reflexes that can operate in parallel and form sequences in response to affordances of the environment. We have developed a common architecture that captures these underlying mechanisms for implementation in engineered devices. The architecture instantiates the underlying networks with discrete time map-based neurons and synapses on a sequential processor. A common board set instantiates releasing mechanisms, command neurons, coordinating neurons, central pattern generators, and reflex functions that are programmed as networks rather than as algorithms. Layered exteroceptive reflexes mediate heading control, impediment compensation, obstacle negotiation, rheotaxis, docking, and odometry and can be adapted to a variety of robotic platforms. We present the implementation of this architecture for three locomotory modes: swimming, walking, and flying.

Keywords

robotics biomimetics electronic nervous system exteroceptive reflex 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stein, P.S., Grillner, G.S., Selverston, A.I., Stuart, D.G.: Neurons, Networks and Motor Behavior. MIT Press, Cambridge (1997)Google Scholar
  2. 2.
    Ayers, J.: Underwater walking. Arthro. Struct. and Develop. 33(3), 347–360 (2004)CrossRefGoogle Scholar
  3. 3.
    Westphal, A., Rulkov, N., Ayers, J., Brady, D., Hunt, M.: Controlling a lamprey-based robot with an electronic nervous system. Struct. and Sys. 8(1), 37–54 (2011)Google Scholar
  4. 4.
    Wood, R.: The First Takeoff of a Biologically Inspired At-Scale Robotic Insect. IEEE Transactions on Robotics (2008)Google Scholar
  5. 5.
    Kennedy, D., Davis, W.J.: Organization of Invertebrate Motor Systems. Handbook of Physiology. The organization of invertebrate motor systems. In: Geiger, S.R., Kandel, E.R., Brookhart, J.M., Mountcastle, V.B. (eds.) Handbook of Physiology, sec. I, vol. I, part 2, pp. 1023–1087. Amer. Physiol. Soc, Bethesda (1977)Google Scholar
  6. 6.
    Rulkov, N.F.: Modeling of spiking-bursting neural behavior using two-dimensional map. Phys. Rev. E 65, 041922 (2002)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Buchanan, J.T., Grillner, S.: Newly identified ’glutamate interneurons’ and their role in locomotion in the lamprey spinal cord. Science 236(4799), 312–314 (1987)CrossRefGoogle Scholar
  8. 8.
    Ayers, J., Davis, W.J.: Neuronal Control of Locomotion in the Lobster (Homarus americanus) 1. Motor Programs for forward and Backward walking. J. Comp. Physiol. A 115, 1–27 (1977)CrossRefGoogle Scholar
  9. 9.
    Ayers, J., Witting, J.: Biomimetic Approaches to the Control of Underwater Walking Machines. Phil. Trans. R. Soc. Lond. A 365, 273–295 (2007)CrossRefGoogle Scholar
  10. 10.
    Duhamel, P.E., Porter, J.A., Finio, B.M., Barrows, G.H., Brooks, D., Wei, G.Y., Wood, R.: Hardware in the loop for Optical Flow Sensing in a Robotic Bee. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, San Francisco, CA (2011)Google Scholar
  11. 11.
    Finio, B.M., Shang, J.K., Wood, R.J.: Body torque modulation for a microrobotic fly. In: IEEE International Conference on Robotics and Automation, pp. 3449–3456 (2009)Google Scholar
  12. 12.
    Lohmann, K., Pentcheff, N., Nevitt, G., Stetten, G., Zimmer-Faust, R., Jarrard, H., Boles, L.: Magnetic orientation of spiny lobsters in the ocean: experiments with undersea coil systems. J. Exp. Biol. 198(10), 2041–2048 (1995)Google Scholar
  13. 13.
    Srinivasan, M., Zhang, S., Lehrer, M., Collett, T.: Honeybee navigation en route to the goal: visual flight control and odometry. J. Exp. Biol. 199, 237–244 (1996)Google Scholar
  14. 14.
    Menzel, R., De Marco, R.J., Greggers, U.: Spatial memory, navigation and dance behaviour in Apis mellifera. J. Comp. Physiol. A 192(9), 889–903 (2006)CrossRefGoogle Scholar
  15. 15.
    Dickinson, M.H., Lent, C.M.: Feeding behavior of the medicinal leech, Hirudo medicinalis L. J. of Comp. Physiol. A 154(4), 449–455 (1984)CrossRefGoogle Scholar
  16. 16.
    Berridge, K.C., Fentress, J.C., Parr, H.: Natural syntax rules control action sequence of rats. Behavioural Brain Research 23(1), 59–68 (1987)CrossRefGoogle Scholar
  17. 17.
    Grasso, F.W., Basil, J.A.: How lobsters, crayfishes, and crabs locate sources of odor: current perspectives and future. Curr. Opin. in Neurobiol. 12, 721–727 (2002)CrossRefGoogle Scholar
  18. 18.
    Purnick, P.E., Weiss, R.: The second wave of synthetic biology: from modules to systems. Nat. Rev. Mol. Cell Biol. 10(6), 410–422 (2009)CrossRefGoogle Scholar
  19. 19.
    Antunes, M.S., Morey, K.J., Smith, J.J., Albrecht, K.D., Bowen, T.A., Zdunek, J.K., Troupe, J.F., Cuneo, M.J., Webb, C.T., Hellinga, H.W., Medford, J.I.: Programmable Ligand Detection System in Plants through a Synthetic Signal Transduction Pathway. PLoS ONE 6(1), e16292 (2011)CrossRefGoogle Scholar
  20. 20.
    Holldobler, B., Wilson, E.O.: The Superorganism: The Beauty, Elegance, and Strangeness of Insect Societies. W. W. Norton, Co., New York (2008)Google Scholar
  21. 21.
    Freitag, L., Grund, M., Singh, S., Partan, J., Koski, P., Ball, K.: The WHOI micro-modem: an acoustic communications and navigation system for multiple platforms. In: Proceedings of MTS/IEEE, OCEANS 2005, vol. 2, pp. 1086–1092 (2005)Google Scholar
  22. 22.
    Freitag, L., Johnson, M., Grund, M., Singh, S., Preisig, J.: Integrated acoustic communication and navigation for multiple UUVs. In: MTS/IEEE Conference and Exhibition, OCEANS 2001, vol. 4, pp. 2065–2070 (2001)Google Scholar
  23. 23.
    Braitenberg, V.: Taxis, Kinesis and Decussation. Prog. Br. Res. 17, 210–222 (1978)CrossRefGoogle Scholar
  24. 24.
    Webb, B.: Validating biorobotic models. J. Neural Engineering 3, 1–20 (2006)CrossRefGoogle Scholar
  25. 25.
    Beer, R.D., Chiel, H.J., Quinn, R.D., Ritzmann, R.E.: Biorobotic approaches to the study of motor systems. Curr. Opin. Neurobiology 8, 777–782 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Joseph Ayers
    • 1
  • Daniel Blustein
    • 1
  • Anthony Westphal
    • 1
  1. 1.Northeastern University Marine Science CenterNahantUSA

Personalised recommendations