Analysis and Classification of Epilepsy Stages with Genetic Programming

  • Arturo Sotelo
  • Enrique Guijarro
  • Leonardo Trujillo
  • Luis Coria
  • Yuliana Martínez
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 175)

Abstract

Epilepsy is a widespread disorder that affects many individuals worldwide. For this reason much work has been done to develop computational systems that can facilitate the analysis and interpretation of the signals generated by a patients brain during the onset of an epileptic seizure. Currently, this is done by human experts since computational methods cannot achieve a similar level of performance. This paper presents a Genetic Programming (GP) based approach to analyze brain activity captured with Electrocorticogram (ECoG). The goal is to evolve classifiers that can detect the three main stages of an epileptic seizure. Experimental results show good performance by the GP-classifiers, evaluated based on sensitivity, specificity, prevalence and likelihood ratio. The results are unique within this domain, and could become a useful tool in the development of future treatment methods.

Keywords

Epilepsy Diagnosis Genetic Programming Classification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Daand, M., Esteller, R., Vachtsevanos, G., Hinson, A., Echauz, J., Litt, B.: Epileptic seizure prediction using hybrid feature selection over multiple intracranial eeg electrode contacts: A report of four patients. IEEE Trans. Biomedical Engineering 50(5), 603–615 (2003)CrossRefGoogle Scholar
  2. 2.
    Barcia, J., Rubiuo, P.: Anticonvulsant and neurotoxic effects of intracerebroventricular injection of phenytoin, phenobarbital and arbamazepine in an amygdala-kindling model of epilepsy in the rat. Epilepsy Research 33, 159–167 (1999)CrossRefGoogle Scholar
  3. 3.
    Barcia, J., Rubiuo, P.: Anticonvulsant and neurotoxic effects of intracerebroventricular injection of phenytoin, phenobarbital and carbamazepine in an amygdala-kindling model of epilepsy in the rat. Epilepsy Research 33, 159–539 (1999)CrossRefGoogle Scholar
  4. 4.
    Bigan, C., Woolfson, W.: Time-frequency analysis of short segments of biomedical data. In: IEEE Proceedings on Science, Measurement and Technology, vol. 147(6), pp. 368–373 (2000)Google Scholar
  5. 5.
    Chiu, A., Jahromi, S., Khosravani, H., Carlen, P., Bardakjian, B.: The effects of high-frequency oscillations in hippocampal electrical activities on the classification of epileptiform events using artificial neural networks. Journal of Neural Engineering 3(1), 9–20 (2006)CrossRefGoogle Scholar
  6. 6.
    Cockerell, O.: Epilepsy, current concepts (2003)Google Scholar
  7. 7.
    Coulter, D., McIntyre, D., Loscher, W.: Animal models of limbic epilepsies: What can they tell us? Brain Pathol. 2(12), 240–256 (2002)Google Scholar
  8. 8.
    D’Alessandro, M., Vachtsevanos, G., Esteller, R., Echauz, J., Litt, A.K.: Spectral entropy and neuronal involvement in patients with mesial temporal lobe epilepsy. In: International Conference on Mathematics and Engineering Techniques in Medicine and Biological Sciences (2000)Google Scholar
  9. 9.
    Durand, D., Bikson, M.: Suppression and control of epileptiform activity by electrical stimulation: a review. Proceedings of the IEEE 89(7), 1065–1082 (2001)CrossRefGoogle Scholar
  10. 10.
    Eggermont, J., Kok, J.N., Kosters, W.A.: Genetic Programming for Data Classification: Partitioning the Search Space. In: Proceedings of the 2004 ACM Symposium on Applied Computing, SAC 2004, pp. 1001–1005. ACM, New York (2004)Google Scholar
  11. 11.
    Franaszczuk, P., Bergey, G.: Time-frequency analysis using the matching pursuit algorithm applied to seizures originating from the mesial temporal lobe. Electroenceph. Clin. Neurophysiol. 106, 513–521 (1998)CrossRefGoogle Scholar
  12. 12.
    Franaszczuk, P.J., Bergey, G.K.: Time-frequency analysis using the matching pursuit algorithm applied to seizures originating from the mesial temporal lobe. Electroenceph. Clin. Neurophysiol. 106(6), 513–521 (1998)CrossRefGoogle Scholar
  13. 13.
    Iasemidis, L., Shiau, D., Sackellares, J., Pardalos, P., Prasad, A.: Dynamical resetting of the human brain at epileptic seizures: Application of nonlinear dynamics and global optimization techniques. IEEE Trans. Biomedical Engineering 51(3), 493–506 (2004)CrossRefGoogle Scholar
  14. 14.
    Jeub, M., Beck, H., Sie, E., Ruschenschmidt, C., Speckmann, E., Ebert, U., Potschka, H., Freichel, C., Reissmuller, E., Loscher, W.: Effect of phenytoin on sodium and calcium currents in hippocampal ca1 neurons of phenytoin-resistant kindled rats. Neuropharmacology 42(1), 107–116 (2002)CrossRefGoogle Scholar
  15. 15.
    Jouny, C., Franaszczuk, P., Bergey, G.: Characterization of epileptic seizure dynamics using gabor atom density. Clinical Neurophysiology 114(3), 426–437 (2003)CrossRefGoogle Scholar
  16. 16.
    Koza, J.R.: Genetic programming II: automatic discovery of reusable programs. MIT Press, Cambridge (1994)MATHGoogle Scholar
  17. 17.
    Litt, B., Echauz, J.: Prediction of epileptic seizures. The Lancet Neurology 1(1), 22–30 (2002)CrossRefGoogle Scholar
  18. 18.
    Loscher, W., Reissmüller, E.: Anticonvulsant effect of fosphenytoin in amigdala-kindled rats: Comparison with phenytoin. Epilepsy Research 30, 69–76 (1998)CrossRefGoogle Scholar
  19. 19.
    Loscher, W., Rundfeldt, C.: Kindling as a model of drug-resistant partial epilepsy: selection of phenytoin-resistant and non-resistant rats. J. Pharmacol. 258, 438–489 (1991)Google Scholar
  20. 20.
    Marchesi, B., Stelle, A., Lopes, H.: Detection of epileptic events using genetic programming. IEE 3, 1198–1201 (1997)Google Scholar
  21. 21.
    Mingui, S., Scheuer, M.: Time-frequency analysis of high-frequency activity at the start of epileptic seizures. Proceedings IEEE/EMBS 3, 1184–1187 (1997)Google Scholar
  22. 22.
    Morimoto, K., Fahnestock, M., Racine, R.: Kindling and status epilepticus models of epilepsy: rewiring the brain. Progress in Neurobiology 73, 1–60 (2004)CrossRefGoogle Scholar
  23. 23.
    Paxinos, G., Watson, C.: The Rat Brain in Stereotatic Coordinates, 4th edn. Academic Press, Sydney (1986)Google Scholar
  24. 24.
    Racine, R.: Modification of seizure activitiy bye electriacl stimulation. ii motor seizure. Clinical Neurophysiology 32(3), 281–294 (1972)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Sackellares, J.: Seizure prediction. Epilepsy Currents 8(3), 55–59 (2008)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Teplan, M.: Fundamentals of eeg measurement. Measurement Science Review 2(2), 1–11 (2002)Google Scholar
  27. 27.
    Trujillo, L., Martínez, Y., Galván-López, E., Legrand, P.: Predicting problem difficulty for genetic programming applied to data classification. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, GECCO 2011, pp. 1355–1362. ACM, New York (2011)CrossRefGoogle Scholar
  28. 28.
    Zaveri, H.: Time frequency representation of electrocortigrams in temporal lobe epilepsy. IEEE Transactions on Biomedical Engineering 39, 502–509 (1992)CrossRefGoogle Scholar
  29. 29.
    Zhang, M., Smart, W.: Using gaussian distribution to construct fitness functions in genetic programming for multiclass object classification. Pattern Recogn. Lett. 27, 1266–1274 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Arturo Sotelo
    • 1
  • Enrique Guijarro
    • 2
  • Leonardo Trujillo
    • 3
  • Luis Coria
    • 3
  • Yuliana Martínez
    • 3
  1. 1.Departamento de Ingeniería Eléctrica y ElectrónicaInstituto Tecnológico de TijuanaTijuanaMéxico
  2. 2.Departamento de Ingeniería ElectrónicaUniversidad Politécnica de ValenciaValenciaSpain
  3. 3.Doctorado en Ciencias de la Ingeniería, Departamento de Ingeniería Eléctrica y ElectrónicaInstituto Tecnológico de TijuanaTijuanaMéxico

Personalised recommendations