Evolutionary Algorithms and Water Resources Optimization

  • Oluwatosin OlofintoyeEmail author
  • Josiah Adeyemo
  • Fred Otieno
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 175)


Heuristic optimization models with varying degree of complexity have been widely applied for resolving water resources optimization and allocation problems. Nevertheless, there still exist uncertainties about finding a generally consistent and trustworthy method that can find solutions, which are really close to the global optimum in all circumstances. This paper makes a review of some of the numerous evolutionary optimization algorithms available to water resources planners and managers. Evolutionary algorithms have been found propitious and useful in facilitating critical water management decisions and are becoming promising global optimization tools for major real world applications. Further research aimed at developing optimization models for water resources planning, management and optimization is therefore necessary.


heuristic optimization global optimum evolutionary algorithm water resources 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Srinivasulu, S., Jain, A.: A comparative analysis of training methods for artificial neural network rainfall-runoff models. Applied Soft Computing 6, 295–306 (2006)CrossRefGoogle Scholar
  2. 2.
    WHO: 10 facts about water scarcity (2009),
  3. 3.
    Dinar, A., Rosegrant, M.W., Meinzen-Dick, R.: Water allocation mechanisms principles and examples. World Bank, Agriculture and Natural Resources Department (1997)Google Scholar
  4. 4.
    Reca, J., Roldan, J., Alcaide, M., Lopez, R., Camacho, E.: Optimisation model for water allocation in deficit irrigation systems: I. Description of the model. Agricultural Water Management 48, 103–116 (2001)CrossRefGoogle Scholar
  5. 5.
    Otieno, F.A.O., Ochieng, G.M.M.: Water management tools as a means of averting a possible water scarcity in South Africa by the year 2025. In: Water Institute of South Africa (WISA) Biennial Conference (2004)Google Scholar
  6. 6.
    Adeyemo, J., Otieno, F.: Differential evolution algorithm for solving multi-objective crop planning model. Agricultural Water Management 97(6), 848–856 (2010)CrossRefGoogle Scholar
  7. 7.
    Olofintoye, O.O., Sule, B.F., Salami, A.W.: Best-fit probability distribution model for peak daily rainfall of selected cities in Nigeria. New York Science Journal 2(3), 1–12 (2009)Google Scholar
  8. 8.
    Davies, E.G.R., Simonovic, S.P.: Global water resources modeling with an integrated model of the social-economic-environmental system. Advances in Water Resources 34, 684–700 (2011)CrossRefGoogle Scholar
  9. 9.
    Olofintoye, O.O., Adeyemo, J.A.: The role of global warming in the reservoir storage drop at Kainji dam in Nigeria. International Journal of the Physical Sciences 6(19), 4614–4620 (2011)Google Scholar
  10. 10.
    Olofintoye, O.O., Salami, A.W.: Development and Assessment of a Quintic Polynomial Model for the Prediction of Maximum Daily Rainfall in Ilorin, Nigeria. NSE Technical Transaction A Technical Publication of the Nigerian Society of Engineers 46(2), 81–91 (2011)Google Scholar
  11. 11.
    Sniedovich, M.: Dynamic programming and the principle of optimality: A systematic approach. Advances in Water Resources 1(4), 183–190 (1978)CrossRefGoogle Scholar
  12. 12.
    Shangguan, Z., Shao, M., Horton, R., Lei, T., Qin, L., Ma, J.: A model for regional optimal allocation of irrigation water resources under deficit irrigation and its applications. Agricultural Water Management 52, 139–154 (2002)CrossRefGoogle Scholar
  13. 13.
    Adeyemo, J.A., Otieno, F.A.O.: Optimizing planting areas using differential evolution (DE) and linear programming (LP). Journal of Physical Sciences 4(4), 212–220 (2009)Google Scholar
  14. 14.
    Adeyemo, J.A., Otieno, F.A.O.: Multi-objective differential evolution algorithm (MDEA) for solving engineering problems. Journal of Applied Sciences 9(20), 3652–3661 (2009)CrossRefGoogle Scholar
  15. 15.
    Babel, M.S., Gupta, A.D., Nayak, D.K.: A Model for Optimal Allocation of Water to Competing Demands. Journal of Water Resources Management 19, 693–712 (2005)CrossRefGoogle Scholar
  16. 16.
    Fernandes, M., Schreider, S.: A penalty minimisation resource (water) allocation model to simulate the effects of new infrastructure in the Goulburn irrigation system. In: 18th World IMACS / MODSIM Congress, Cairns, Australia, July 13-17 (2009)Google Scholar
  17. 17.
    Otieno, F.A.O., Adeyemo, J.A.: Strategies of differential evolution for optimum cropping pattern. Trends in Applied Sciences Research 5, 1–15 (2010)CrossRefGoogle Scholar
  18. 18.
    Cai, X., McKinney, D.C., Lasdon, L.S.: Solving nonlinear water management models using a combined genetic algorithm and linear programming approach. Advances in Water Resources 24(6), 667–676 (2001)CrossRefGoogle Scholar
  19. 19.
    Yuan, X., Zhang, Y., Wang, L., Yuan, Y.: An enhanced differential evolution algorithm for daily optimal hydro generation scheduling. Computers & Mathematics with Applications 55(11), 2458–2468 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Selle, B., Muttil, N.: Testing the structure of a hydrological model using Genetic Programming. Journal of Hydrology 397, 1–9 (2010)CrossRefGoogle Scholar
  21. 21.
    Weise, T.: Global Optimization Algorithms - Theory and Application, vol. 1., p. 820 (2009), Thomas Weise:
  22. 22.
    Karterakis, S.M., Karatzas, G.P., Nikolos, L.K., Papadopoulou, M.P.: Application of Linear Programmimg and Differential Evolutionary Optimization Methodologies for the Solution of Coastal Subsurface Water Management Problems Subject to Environmental Criteria. Journal of Hydrology 342, 270–282 (2007)CrossRefGoogle Scholar
  23. 23.
    Qin, H., Zhou, J., Lu, Y., Wang, Y., Zhang, Y.: Multi-objective differential evolution with adaptive Cauchy mutation for short-term multi-objective optimal hydrothermal scheduling. Energy Conversion and Management 51(4), 788–794 (2010)CrossRefGoogle Scholar
  24. 24.
    Yousefi, H., Handroos, H., Soleymani, A.: Application of Differential Evolution in system identification of a servo-hydraulic system with a flexible load. Mechatronics 18, 513–528 (2008)CrossRefGoogle Scholar
  25. 25.
    Nasseri, M., Asghari, K., Abedini, M.J.: Optimized Scenario for Rainfall Forecasting Using Genetic Algorithm Coupled with Artificial Neural Network. Expert Systems with Applications 35, 1415–1421 (2008)CrossRefGoogle Scholar
  26. 26.
    Cho, J.H., Seok Sung, K., Ryong Ha, S.: A river water quality management model for optimising regional wastewater treatment using a genetic algorithm. Journal of Environmental Management 73, 229–242 (2004)CrossRefGoogle Scholar
  27. 27.
    Kerachian, R., Karamouz, M.: A stochastic conflict resolution model for water quality management in reservoir-river systems. Advances in Water Resources 30, 866–882 (2007)CrossRefGoogle Scholar
  28. 28.
    Wang, J.Y., Chang, T.P., Chen, J.S.: An enhanced genetic algorithm for bi-objective pump scheduling in water supply. Expert Systems with Applications 36, 10249–10258 (2009)CrossRefGoogle Scholar
  29. 29.
    Wang, Y., Wang, H., Lei, X., Jiang, Y., Song, X.: Flood Simulation using Parallel Genetic Algorithm Integrated Wavelet Neural Networks. Journal of Neurocomputing 74(17), 2734–2744 (2011)CrossRefGoogle Scholar
  30. 30.
    Lavric, V., Iancu, P., Pleayu, V., Barbosa-PaVoa, A., Matos, H.: Optimal water system topology through genetic algorithm under multiple contaminated-water sources constraint. In: Computer Aided Chemical Engineering: European Symposium on Computer-Aided Process Engineering-14, vol. 18, pp. 433–438 (2004)Google Scholar
  31. 31.
    Lavric, V., Lancu, P., Pleayu, V.: Genetic algorithm optimisation of water consumption and wastewater network topology. Journal of Cleaner Production 13, 1405–1415 (2005)CrossRefGoogle Scholar
  32. 32.
    Price, K., Storn, R.M., Lampinen, J.A.: Differential Evolution: A Practical Approach to Global Optimization. Springer-Verlag New York, Inc., Secaucus (2005)zbMATHGoogle Scholar
  33. 33.
    Goudos, S.K., Baltzis, K.B., Antoniadis, K., Zaharis, Z.D., Hilas, C.S.: A comparative study of common and self-adaptive differential evolution strategies on numerical benchmark problems. Procedia Computer Science 3, 83–88 (2011)CrossRefGoogle Scholar
  34. 34.
    Lu, Y., Zhou, J., Qin, H., Wang, Y., Zhang, Y.: Environmental/economic dispatch problem of power system by using an enhanced multi-objective differential evolution algorithm. Energy Conversion and Management 52, 1175–1183 (2011)CrossRefGoogle Scholar
  35. 35.
    Price, K., Storn, R.: Differential evolution. Dr. Dobb’s Journal, 18–24 (1997)Google Scholar
  36. 36.
    Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. John Wiley & Sons, Chichester (2001)zbMATHGoogle Scholar
  37. 37.
    Karterakis, S.M., Karatzas, G.P., Nikolos, L.K., Papadopoulou, M.P.: Application of linear programming and differential evolutionary optimization methodologies for the solution of coastal subsurface water management problems subject to environmental criteria. Journal of Hydrology 342, 270–282 (2007)CrossRefGoogle Scholar
  38. 38.
    Mirghani, B.Y., Mahinthakumar, K.G., Tryby, M.E., Ranjithan, R.S., Zechman, E.M.: A parallel evolutionary strategy based simulation optimization approach for solving groundwater source identification problems. Advances in Water Resources 32, 1373–1385 (2009)CrossRefGoogle Scholar
  39. 39.
    Berlich, R.D., Kunze, M.: Parametric optimization with evolutionary strategies in particle physics: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. In: IXth International Workshop on Advanced Computing and Analysis Techniques in Physics ResearchGoogle Scholar
  40. 40.
    Kanoun, O., Troltzsch, U., Trankler, H.R.: Benefits of evolutionary strategy in modeling of impedance spectra. Electrochimica Acta 51, 1453–1461 (2006)CrossRefGoogle Scholar
  41. 41.
    Navale, R.L., Nelson, R.M.: Use of evolutionary strategies to develop an adaptive fuzzy logic controller for a cooling coil. Energy and Buildings 42, 2213–2218 (2010)CrossRefGoogle Scholar
  42. 42.
    Aytek, A., Asce, M., Alp, M.: An Application of Artificial Intelligence for Rainfall-Runoff Modeling. Journal of Earth System Science 117(2), 145–155 (2008)CrossRefGoogle Scholar
  43. 43.
    Ghorbani, M.A., Khatibi, R., Aytek, A., Makarynskyy, O., Shiri, J.: Sea water level forecasting using genetic programming and comparing the performance with Artificial Neural Networks. Computers & Amp: Geosciences 36, 620–627 (2010)CrossRefGoogle Scholar
  44. 44.
    Nasseri, M., Moeini, A., Tabesh, M.: Forecasting monthly urban water demand using Extended Kalman Filter and Genetic Programming. Expert Systems with Applications 38, 7387–7395 (2011)CrossRefGoogle Scholar
  45. 45.
    Shiri, J., Kisi, O.: Comparison of genetic programming with neuro-fuzzy systems for predicting short-term water table depth fluctuations. Computers & Amp: Geosciences 37, 1692–1710 (2010)CrossRefGoogle Scholar
  46. 46.
    Kisi, O., Guven, A.: A machine code-based genetic programming for suspended sediment concentration estimation. Advances in Engineering Software 41, 939–945 (2010)zbMATHCrossRefGoogle Scholar
  47. 47.
    Sreekanth, J., Datta, B.: Multi-objective management of saltwater intrusion in coastal aquifers using genetic programming and modular neural network based surrogate models. Journal of Hydrology 393, 245–256 (2010)CrossRefGoogle Scholar
  48. 48.
    Kerkez, B., Glaser, S.D., Dracup, J.A., Bales, R.C.: A Hybrid System Model of Seasonal Snowpack Water Balance. In: HSCC 2010, April 12-15 (2010)Google Scholar
  49. 49.
    Chen, S., Fu, G.: Combining fuzzy iteration model with dynamic programming to solve multiobjective multistage decision making problems. Fuzzy Sets and Systems 152, 499–512 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    Khademi, M.H., Setoodeh, P., Rahimpour, M.R., Jahanmiri, A.: Optimization of methanol synthesis and cyclohexane dehydrogenation in a thermally coupled reactor using differential evolution (DE) method. International Journal of Hydrogen Energy 34, 6930–6944 (2009)CrossRefGoogle Scholar
  51. 51.
    Cisty, M.: Hybrid model for water distribution design. Congress on Evolutionary Computation (CEC), 1–8 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Oluwatosin Olofintoye
    • 1
    Email author
  • Josiah Adeyemo
    • 1
  • Fred Otieno
    • 1
  1. 1.Durban University of TechnologyDurbanSouth Africa

Personalised recommendations