Evolution of Contours for Topology Optimization

  • Gideon Avigad
  • Erella Matalon Eisenstadt
  • Shaul Salomon
  • Frederico Gadelha Guimar
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 175)

Abstract

Topology optimization is used to find a preliminary structural configuration that meets a predefined criterion. It involves optimizing both the external boundary and the distribution of the internal material within a structure. Usually, counters are used a posteriori to the topology optimization to further adapt the shape of the topology according to manufacturing needs. Here we suggest optimizing topologies by evolving counters. We consider both outer and inner counters to allow for holes in the structure. Due to the difficulty of defining a reliable measure for the differences among shapes, little research attention has been focused on simultaneously finding diverse sets of optimal topologies. Here, niching is implemented within a suggested evolutionary algorithm in order to find diverse topologies. The niching is then embedded within the algorithm through the use of our recently introduced partitioning algorithm. For this algorithm to be used, the topologies are represented as functions. Two examples are given to demonstrate the approach. These examples show that the algorithm evolves a set of diverse optimal topologies.

Keywords

Genetic Algorithm Topology Optimization Single Objective Problem Offspring Population Cantilever Plate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Avigad, G., Goldvard, A., Salomon, S.: Partitioning Algorithms. Technical report No. br352012, http://brd.braude.ac.il/~gideon
  2. 2.
    Conceio, A.: A hierarchical genetic algorithm with age structure for multimodal optimal design of hybrid composites. Structural Multidisciplinary Optimization 31, 280–294 (2006)CrossRefGoogle Scholar
  3. 3.
    Erlbaum, L.: Conference on Genetic Algorithm, pp. 41–49. Associates Inc., Hillsdale (1987)Google Scholar
  4. 4.
    Glover, F.: Tabu search part I. ORSA Journal on Computing 1(3), 190–206 (1989)MATHCrossRefGoogle Scholar
  5. 5.
    Goldberg, D.E.: Genetic algorithms in search, optimization and machine learning. Addison Wesley, Massachusetts (1989)MATHGoogle Scholar
  6. 6.
    Goldberg, D.E., Richardson, J.: Genetic algorithms with sharing for multimodal function optimization. In: Proceedings of the Second InternationalGoogle Scholar
  7. 7.
    Hadar, J., Rusell, W.R.: Rules for Ordering Uncertain Prospects. American Economic Review 59, 25–34 (1969)Google Scholar
  8. 8.
    Holland, J.H.: Adaptation in neural and artificial systems. The University of Michigan Press, Ann Arbor (1975)Google Scholar
  9. 9.
    Harik, G.R.: Finding multimodal solutions using restricted tournament selection. In: Eshelman, L. (ed.) Sixth International Conference on Genetic Algorithms, pp. 24–31. Morgan Kaufmann, San Francisco (1995)Google Scholar
  10. 10.
    Jahn, J.: Vector Optimization, Theory, Applications and Extensions, 2nd edn. Springer, Heidelberg (2011)MATHGoogle Scholar
  11. 11.
    Jensen, E.D.: Topological structural design using genetic algorithms, Phd. Dissertation, Purdue University, Lafayette (1992)Google Scholar
  12. 12.
    Li, J.-P., Balazs, M.E., Parks, G.T., Clarkson, P.J.: A species conserving genetic algorithm for multimodal function optimization. Evolutionary Computation 10(3), 207–234 (2002)CrossRefGoogle Scholar
  13. 13.
    Li, J.-P., Li, X.-D., Wood, A.: Species Based Evolutionary Algorithms for Multimodal Optimization. In: A Brief Review, WCCI 2010 IEEE (2010)Google Scholar
  14. 14.
    Kennedy, J., Eberhart, R.C.: Particle Swarm Optimization. In: IEEE Int.Conf. on Neural Networks, pp. 1942–1948 (1995)Google Scholar
  15. 15.
    Kicinger, R., Arciszewski, T., De Jong, K.A.: Evolutionary computation and structural design: a survey of the state of the art. Computers and Structures 83(23-24), 1943–1978 (2005)CrossRefGoogle Scholar
  16. 16.
    Kim, I.Y., de Weck, O.L.: Variable chromosome length genetic algorithm for progressive refinement in topology optimization. Structural and Multidisciplinary Optimization 29(6), 445–456 (2005)CrossRefGoogle Scholar
  17. 17.
    Kirk Martini, P.E.: Harmony Search Method for Multimodal Size, Shape, and Topology Optimization of Structural Frameworks. Journal of Structural Engineering 137(11), 1332–1339 (2011)CrossRefGoogle Scholar
  18. 18.
    Mahfoud, S.W.: Crowding and preselection revisited. In: Bnner, R.M., Manderick, B. (eds.) Proceedings of the Second International Conference on Parallel Problem Solving from Nature - PPSN 2011, vol. 36, pp. 27–36. Elsevier Science Publishers (1992)Google Scholar
  19. 19.
    Mengshoel, O.J., Goldberg, D.E.: The Crowding Approach to Niching in Genetic Algorithm. Evolutionary Computation 16(3), 315–354 (2008)CrossRefGoogle Scholar
  20. 20.
    Rechenberg, I.: Evolutionsstrategie: Optimierung technischer systeme nach prinzipien der biologischen evolution, Stuttgart. Fommann-Holzbook (1973)Google Scholar
  21. 21.
    Sandgren, E., Jensen, E.D., Welton, J.: Topological design of structural components using genetic optimization methods. In: Proceedings of the Winter Annual Meeting of the American Society of Mechanical Engineers, pp. 31–43 (1990)Google Scholar
  22. 22.
    Stoean, C., Preuss, M., Stoean, R., Dumitrescu, D.: Disburdening the Species Conservation Evolutionary Algorithm of Arguing with Radii. In: GECCO 2007, pp. 1420–1427 (2007)Google Scholar
  23. 23.
    Wang, S.Y., Tai, K.: Graph representation for structural topology optimization using genetic algorithms. Computers and Structures 82(2021), 1609–1622 (2004)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Wang, S.Y., Tai, K.: Structural topology design of optimization using genetic algorithm with a bit-array representation. Computer Methods in Applied Mechanics and Engineering 194(3638), 3749–3770 (2005)MATHCrossRefGoogle Scholar
  25. 25.
    Woon, S.Y., Tong, L., Osvaldo, O.M., Steven, G.P.: Effective optimization of continuum topologies through a multi-GA system. Computer Methods in Applied Mechanics and Engineering 194(3033), 3416–3437 (2005)MATHCrossRefGoogle Scholar
  26. 26.
    Li, X.: Adaptively Choosing Neighbourhood Bests Using Species in a Particle Swarm Optimizer for Multimodal Function Optimization. In: Deb, K., Tari, Z. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 105–116. Springer, Heidelberg (2004); Fommann-Holzbook 1973CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Gideon Avigad
    • 1
  • Erella Matalon Eisenstadt
    • 1
  • Shaul Salomon
    • 1
  • Frederico Gadelha Guimar
    • 2
  1. 1.Department of Mechanical EngineeringOrt Braude CollegeKarmielIsrael
  2. 2.Department of Electrical EngineeringFederal University of MinasGeraisBrazil

Personalised recommendations