EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation II pp 339-353 | Cite as
Evolving Conspicuous Point Detectors for Camera Trajectory Estimation
Abstract
The interaction between a visual system with its environment is studied in terms of a purposive vision system with the aim of establishing a link between perception and action. A system that performs visuomotor tasks requires a selective perception process in order to execute specific motion actions. This combination is understood as a visual behavior. This paper presents a solution to the process of synthesizing visual behaviors through genetic programming, resulting in specialized visual routines that are used to estimate the trajectory of a camera within a vision based simultaneous localization and map building system. Thus, the experiments were carried out with a real-working system consisting of a robotic manipulator in a hand-eye configuration. The main idea is to evolve a conspicuous point detector based on the concept of an artificial dorsal stream. The results on this paper show that it is in fact possible to find key points in an image through a visual attention process in combination with an evolutionary algorithm to design specialized visual behaviors.
Keywords
Visual Attention Pareto Front Interest Point Dorsal Stream Visual BehaviorPreview
Unable to display preview. Download preview PDF.
References
- 1.Aloimonos, J., Weiss, I., Bandyopadhyay, A.: Active vision. In: Proceedings of the First International Conference on Computer Vision, pp. 35–54 (1987)Google Scholar
- 2.Aloimonos, Y.: Active Perception, 292 pages. Lawrence Erlbaum Associates, Publishers (1993)Google Scholar
- 3.Ballard, D.: Animate Vision. Artificial Intelligence Journal 48, 57–86 (1991)CrossRefGoogle Scholar
- 4.Clemente, E., Olague, G., Dozal, L., Mancilla, M.: Object Recognition with an Optimized Ventral Stream Model Using Genetic Programming. In: Di Chio, C., Agapitos, A., Cagnoni, S., Cotta, C., de Vega, F.F., Di Caro, G.A., Drechsler, R., Ekárt, A., Esparcia-Alcázar, A.I., Farooq, M., Langdon, W.B., Merelo-Guervós, J.J., Preuss, M., Richter, H., Silva, S., Simões, A., Squillero, G., Tarantino, E., Tettamanzi, A.G.B., Togelius, J., Urquhart, N., Uyar, A.Ş., Yannakakis, G.N. (eds.) EvoApplications 2012. LNCS, vol. 7248, pp. 315–325. Springer, Heidelberg (2012)CrossRefGoogle Scholar
- 5.Davison, A.J.: Real-Time Simultaneous Localisation and Mapping with a Single Camera. In: Proceedings of the Ninth IEEE International Conference on Computer Vision, vol. 2, pp. 1403–1410. IEEE Computer Society, Washington, DC (2003)CrossRefGoogle Scholar
- 6.Dozal, L., Olague, G., Clemente, E., Sánchez, M.: Evolving Visual Attention Programs through EVO Features. In: Di Chio, C., Agapitos, A., Cagnoni, S., Cotta, C., de Vega, F.F., Di Caro, G.A., Drechsler, R., Ekárt, A., Esparcia-Alcázar, A.I., Farooq, M., Langdon, W.B., Merelo-Guervós, J.J., Preuss, M., Richter, H., Silva, S., Simões, A., Squillero, G., Tarantino, E., Tettamanzi, A.G.B., Togelius, J., Urquhart, N., Uyar, A.Ş., Yannakakis, G.N. (eds.) EvoApplications 2012. LNCS, vol. 7248, pp. 326–335. Springer, Heidelberg (2012)CrossRefGoogle Scholar
- 7.Dunn, E., Olague, G.: Multi-objective Sensor Planning for Efficient and Accurate Object Reconstruction. In: Raidl, G.R., Cagnoni, S., Branke, J., Corne, D.W., Drechsler, R., Jin, Y., Johnson, C.G., Machado, P., Marchiori, E., Rothlauf, F., Smith, G.D., Squillero, G. (eds.) EvoWorkshops 2004. LNCS, vol. 3005, pp. 312–321. Springer, Heidelberg (2004)CrossRefGoogle Scholar
- 8.Dunn, E., Olague, G.: Pareto Optimal Camera Placement for Automated Visual Inspection. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3821–3826 (2005)Google Scholar
- 9.Fermüller, C., Aloimonos, Y.: The Synthesis of Vision and Action. In: Landy, et al. (eds.) Exploratory Vision: The Active Eye, ch. 9, pp. 205–240. Springer (1995)Google Scholar
- 10.Hernández, D., Olague, G., Clemente, E., Dozal, L.: Evolutionary Purposive or Behavioral Vision for Camera Trajectory Estimation. In: Di Chio, C., Agapitos, A., Cagnoni, S., Cotta, C., de Vega, F.F., Di Caro, G.A., Drechsler, R., Ekárt, A., Esparcia-Alcázar, A.I., Farooq, M., Langdon, W.B., Merelo-Guervós, J.J., Preuss, M., Richter, H., Silva, S., Simões, A., Squillero, G., Tarantino, E., Tettamanzi, A.G.B., Togelius, J., Urquhart, N., Uyar, A.Ş., Yannakakis, G.N. (eds.) EvoApplications 2012. LNCS, vol. 7248, pp. 336–345. Springer, Heidelberg (2012)CrossRefGoogle Scholar
- 11.Itti, L., Koch, C.: Computational modelling of visual attention. Nature Review Neuroscience 2(3), 194–203 (2001)CrossRefGoogle Scholar
- 12.Koch, C., Ullman, S.: Shifts in selective visual attention: towards the underlying neural circuitry. Hum Neurobiol 4(4), 219–227 (1985)Google Scholar
- 13.Lepetit, V., Fua, P.: Monocular Model-Based 3D Tracking of Rigid Objects: A Survey. In: Foundations and Trends in Computer Graphics and Vision, vol. 1, pp. 1–89 (2005)Google Scholar
- 14.Olague, G.: Automated Photogrammetric Network Design using Genetic Algorithms. Photogrammetric Engineering & Remote Sensing 68(5), 423–431 (2002)Google Scholar
- 15.Olague, G., Mohr, R.: Optimal Camera Placement for Accurate Reconstruction. Pattern Recognition 27(4), 927–944 (2002)CrossRefGoogle Scholar
- 16.Olague, G., Trujillo, L.: Interest Point Detection through Multiobjective Genetic Programming. Applied Soft Computing (to appear, 2012)Google Scholar
- 17.Shi, J., Tomasi, C.: Good features to track. In: Proceedings of Computer Vision and Pattern Recognition, pp. 593–600 (1994)Google Scholar
- 18.Treisman, A.M., Gelade, G.: A feature-integration theory of attention. Cognitive Psychology 12(1), 97–136 (1980)CrossRefGoogle Scholar
- 19.Trujillo, L., Olague, G.: Automated Design of Image Operators that Detect Interest Points. Evolutionary Computation 16, 483–507 (2008)CrossRefGoogle Scholar
- 20.Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength Pareto evolutionary algorithm. Technical report, Evolutionary Methods for Design (2001)Google Scholar