A Geographic Information System Model for Evaluation of Electric Power Generation from Photovoltaic Installations

  • Ignacio J. Ramírez-RosadoEmail author
  • Pedro J. Zorzano-Santamaría
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 177)


This paper presents a novel and useful GIS model for evaluation of electric power generation from the solar resource available in a given region, through the creation of a comprehensive geographical database in a Geographic Information System (GIS). A large amount of data from various sources (weather, reflectance, technologies, etc.) are subjected to detailed calculations which lead to the evaluation of specific local characteristics of power generation (during a typical period of time: typical month, typical year) at each point of the region under study. It has been applied to the Spanish region of La Rioja, divided into cells of GIS coverage of 5x5 meters, a resolution never used before (more than 1012 points studied). The model is applicable to any resolution and any area where reliable meteorological and geographical data can be collected.


Power Generation Renewable Resources Geographic Information Systems Photovoltaic Energy Production 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schroedter-Homscheidt, M., et al.: The ESA - ENVISOLAR Project: Experience on the Commercial Use of Earth Observation Based Solar Surface Irradiance Measurements for Energy Business Purposes. In: Dunlop, E., Wald, L., Šúri, M. (eds.) Solar Energy Resource Management for Electricity Generation from Local Level to Global Scale, pp. 111–124. Nova Science Publishers, New York (2006)Google Scholar
  2. 2.
    Dumortier, D.: Use of Satellite Images to Produce Solar Radiation and Daylight Information: Experience from Three European Projects. In: Dunlop, E., Wald, L., Šúri, M. (eds.) Solar Energy Resource Management for Electricity Generation from Local Level to Global Scale, pp. 11–28. Nova Science Publishers, New York (2006)Google Scholar
  3. 3.
    Cebecauer, T., Huld, T., Šúri, M.: Using high-resolution digital elevation model for improved PV yield estimates. In: 22nd European Photovoltaic Solar Energy Conference, pp. 3553–3557. WIP Renewable Energies, Milano (2007)Google Scholar
  4. 4.
    D’Agostino, V., Zelenka, A.: Supplementing Solar Radiation Network Data by Co-Kriging with Satellite Images. International Journal of Climatology 12, 749–761 (1992)CrossRefGoogle Scholar
  5. 5.
    Duffie, J.A., Beckman, W.A.: Solar Engineering of Thermal Processes. Wiley-Interscience, New York (2006)Google Scholar
  6. 6.
    Fröhlich, C.: Solar Irradiance Variability since 1978. Space Science Reviews, 1–13 (2006)Google Scholar
  7. 7.
    Iqbal, M.: An Introduction to Solar Radiation. Academic Press, Orlando (1983)Google Scholar
  8. 8.
    Liu, B.Y.H., Jordan, R.C.: The Interrelationship and Characteristic Distribution of Direct, Diffuse and Total Solar Radiation. Solar Energy 4(3), 1–19 (1960)CrossRefGoogle Scholar
  9. 9.
    Collares Pereira, M., Rabl, A.: The Average Distribution of Solar Radiation Correlations between Diffuse and Hemispherical and between Daily and Hourly Insolation Values. Solar Energy 22(2), 155–164 (1979)CrossRefGoogle Scholar
  10. 10.
    Erbs, D.G., Klein, S.A., Duffie, J.A.: Estimation of the Diffuse Radiation Fraction for Hourly, Daily and Monthly Average Global Radiation. Solar Energy 28(4), 293–304 (1982)CrossRefGoogle Scholar
  11. 11.
    Hottel, H.C.: A Simple Model for Estimating the Transmittance of Direct Solar Radiation through Clean Atmospheres. Solar Energy 18(3), 129–134 (1976)CrossRefGoogle Scholar
  12. 12.
    Klein, S.A., Theilacker, J.C.: An Algorithm for Calculating Monthly Average Radiation on Inclined Surfaces. Journal of Solar Energy Engineering 103, 29–33 (1981)CrossRefGoogle Scholar
  13. 13.
    Kasten, F.: The Linke Turbidity Factor Based on Improved Values of the Integral Rayleigh Optical Thickness. Solar Energy 56, 239–244 (1996)CrossRefGoogle Scholar
  14. 14.
    SoDa: Solar Radiation Data,
  15. 15.
    Braun, J.E., Mitchell, J.C.: Solar Geometry for Fixed and Tracking Surfaces. Solar Energy 31(5), 439–444 (1983)CrossRefGoogle Scholar
  16. 16.
    Evans, D.L.: Simplified Method for Predicting Photovoltaic Array Output. Solar Energy 27(6), 555–560 (1981)CrossRefGoogle Scholar
  17. 17.
    de La Rioja, G.: Meteorología: Estaciones del Gobierno de La Rioja,
  18. 18.
    ArcGIS® v.9 Software, Environmental Systems Research Institute, Inc. (Esri), Redlands, California (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ignacio J. Ramírez-Rosado
    • 1
    Email author
  • Pedro J. Zorzano-Santamaría
    • 2
  1. 1.Department of Electrical EngineeringUniversity of ZaragozaZaragozaSpain
  2. 2.Department of Electrical EngineeringUniversity of La RiojaLogroñoSpain

Personalised recommendations