Genetic Algorithm Calibration for Two Objective Scheduling Parallel Jobs on Hierarchical Grids

  • Victor Hugo Yaurima-Basaldua
  • Andrei Tchernykh
  • Yair Castro-Garcia
  • Victor Manuel Villagomez-Ramos
  • Larisa Burtseva
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7204)

Abstract

This paper addresses non-preemptive offline scheduling parallel jobs on a Grid. We consider a Grid scheduling model with two stages. At the first stage, jobs are allocated to a suitable Grid site, while at the second stage, local scheduling is independently applied to each site. In this environment, one of the big challenges is to provide a job allocation that allows more efficient use of resources and user satisfaction. In general, the criteria that help achieve these goals are often in conflict. To solve this problem, two-objective genetic algorithm is proposed. We conduct comparative analysis of five crossover and three mutation operators, and determine most influential parameters and operators. To this end multi factorial analysis of variance is applied.

Keywords

Offline scheduling Grid Genetic Algorithm Crossover Operator Mutation Operator 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Avellino, G., Beco, S., Cantalupo, B., Maraschini, A., Pacini, F., Terracina, A., Barale, S., Guarise, A., Werbrouck, A., Di Torino, S., Colling, D., Giacomini, F., Ronchieri, E., Gianelle, A., Peluso, R., Sgaravatto, M., Mezzadri, M., Prelz, F., Salconi, L.: The EU datagrid workload management system: towards the second major release. In: 2003 Conference for Computing in High Energy and Nuclear Physics. University of California, La Jolla (2003)Google Scholar
  2. 2.
    Bierwirth, C., Mattfeld, D., Kopfer, H.: On Permutation Representations for Scheduling Problems. In: Ebeling, W., Rechenberg, I., Voigt, H.-M., Schwefel, H.-P. (eds.) PPSN 1996, Part II. LNCS, vol. 1141, pp. 310–318. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  3. 3.
    Dutot, P., Eyraud, L., Mounie, G., Trystram, D.: Models for scheduling on large scale platforms: which policy for which application? In: Proceedings of 18th International Symposium on Parallel and Distributed Processing, p. 172 (2004)Google Scholar
  4. 4.
    Elmroth, E., Tordsson, J.: An interoperable, standards based Grid resource broker and job submission service. In: First International Conference on e-Science and Grid Computing, 2005, pp. 212–220. IEEE Computer Society, Melbourne (2005)CrossRefGoogle Scholar
  5. 5.
    Gen, M., Cheng, R.: Genetic algorithms and engineering optimization, p. 512. John Wiley and Sons, New York (1997)Google Scholar
  6. 6.
    Graham, R.L., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Optimization and approximation in deterministic sequencing and scheduling: a survey. In: Hammer, P.L., Johnson, E.L., Korte, B.H. (eds.) Discrete Optimization II. Annals of Discrete Mathematics, vol. 5, pp. 287–326. North-Holland, Amsterdam (1979)Google Scholar
  7. 7.
    Guinet, A., Solomon, M.: Scheduling Hybrid Flowshops to Minimize Maximum Tardiness or Maximum Completion Time. Int. J. Production Research 34(6), 1643–1654 (1996)MATHCrossRefGoogle Scholar
  8. 8.
    GWA Grid Workloads Archive, http://gwa.ewi.tudelft.nl
  9. 9.
    Holland, J.: Adaptation in natural and artificial systems. University of Michigan Press (1975)Google Scholar
  10. 10.
    Huedo, E., Montero, R.S., Llorente, I.M.: Evaluating the reliability of computational grids from the end user’s point of view. Journal of Systems Architecture 52(12), 727–736 (2006)CrossRefGoogle Scholar
  11. 11.
    Kurowski, K., Nabrzyski, J., Oleksiak, A., Wglarz, J.: A multicriteria approach to two-level hierarchy scheduling in Grids. Journal of Scheduling 11(5), 371–379 (2008)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Lorpunmanee, S., Noor, M., Hanan, A., Srinoy, S.: Genetic algorithm in Grid scheduling with multiple objectives. In: Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, pp. 429–435 (2006)Google Scholar
  13. 13.
    Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolutions Programs, 3rd edn. Springer, Heidelberg (1996)Google Scholar
  14. 14.
    PWA Parallel Workloads Archive, http://www.cs.huji.ac.il/labs/parallel/workload/
  15. 15.
    Ramirez-Alcaraz, J.M., Tchernykh, A., Yahyapour, R., Schwiegelshohn, U., Quezada-Pina, A., Gonzalez-Garcia, J.-L., Hirales-Carbajal, A.: Job Allocation Strategies with User Run Time Estimates for Online Scheduling in Hierarchical Grids. J. Grid Computing 9, 95–116 (2011)CrossRefGoogle Scholar
  16. 16.
    Rodero, I., Corbalán, J., Badía, R.M., Labarta, J.: eNANOS Grid Resource Broker. In: Sloot, P.M.A., Hoekstra, A.G., Priol, T., Reinefeld, A., Bubak, M. (eds.) EGC 2005. LNCS, vol. 3470, pp. 111–121. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Ruiz, R., Maroto, C.: A genetic algorithm for hybrid flowshops with sequence dependent setup times and machine eligibility. European Journal of Operational Research 169, 781–800 (2006)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Siddiqui, M., Villazon, A., Fahringer, T.: Grid Capacity Planning with Negotiation-based Advance Reservation for Optimized QoS. In: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing (SC 2006). ACM, New York, article 103 (2006), http://doi.acm.org/10.1145/1188455.1188563
  19. 19.
    Tsafrir, D., Etsion, Y., Feitelson, D.G.: Backfilling using system-generated predictions rather than user runtime estimates. IEEE Trans. Parallel Distrib. Syst. 18, 789–803 (2007)CrossRefGoogle Scholar
  20. 20.
    Tchernykh, A., Schwiegelsohn, U., Yahyapour, R., Kuzjurin, N.: Online Hierarchical Job Scheduling on Grids with Admissible Allocation. Journal of Scheduling 13(5), 545–552 (2010)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Lifka, D.A.: The ANL/IBM SP Scheduling System. In: Feitelson, D.G., Rudolph, L. (eds.) IPPS-WS 1995 and JSSPP 1995. LNCS, vol. 949, pp. 295–303. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  22. 22.
    Skovira, J., Chan, W., Zhou, H., Lifka, D.: The EASY - LoadLeveler API Project. In: Feitelson, D.G., Rudolph, L. (eds.) IPPS-WS 1996 and JSSPP 1996. LNCS, vol. 1162, pp. 41–47. Springer, Heidelberg (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Victor Hugo Yaurima-Basaldua
    • 1
  • Andrei Tchernykh
    • 2
  • Yair Castro-Garcia
    • 3
  • Victor Manuel Villagomez-Ramos
    • 1
  • Larisa Burtseva
    • 3
  1. 1.CESUES Superior Studies CenterSan LuisMexico
  2. 2.CICESE Research CenterEnsenadaMexico
  3. 3.Autonomous University of Baja CaliforniaMexicaliMexico

Personalised recommendations