Approaches to Parallelize Pareto Ranking in NSGA-II Algorithm

  • Algirdas Lančinskas
  • Julius Žilinskas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7204)

Abstract

In this paper several new approaches to parallelize multi-objective optimization algorithm NSGA-II are proposed, theoretically justified and experimentally evaluated. The proposed strategies are based on the optimization and parallelization of the Pareto ranking part of the algorithm NSGA-II. The speed-up of the proposed strategies have been experimentally investigated and compared with each other as well as with other frequently used strategy on up to 64 processors.

Keywords

Multi-objective Optimization Pareto Dominance Pareto Ranking Non-dominated Sorting Genetic Algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Durillo, J.J., Nebro, A.J., Coello, C.A.C., García-Nieto, J., Luna, F., Alba, E.: A Study of Multiobjective Metaheuristics When Solving Parameter Scalable Problems. IEEE Transactions on Evolutionary Computation 14(4), 618–635 (1981)CrossRefGoogle Scholar
  2. 2.
    Sbalzarini, I.F., Muler, S., Koumoutsakos, P.: Multiobjective optimization using Evolutionary Algorithms. In: Proceedings of the Summer Program 2000, Center of Turbulence Research, pp. 63–74 (2000)Google Scholar
  3. 3.
    Voorneveld, M.: Characterization of Pareto Dominance. SSE/EFI Working Paper Series in Economics and Finance, No. 487 (2002)Google Scholar
  4. 4.
    Srinivas, N., Deb, K.: Multi-Objective Function Optimization Using Non-dominated Sorting Genetic Algorithms. Evolutionary Computation 2(3), 221–248 (1995)CrossRefGoogle Scholar
  5. 5.
    Mitra, K., Deb, K., Gupta, S.K.: Multiobjective Dynamic Optimization of an Industrial Nylon 6 Semibatch Reactor Using Genetic Algorithms. Journal of Applied Polymer Science 69(1), 69–87 (1998)CrossRefGoogle Scholar
  6. 6.
    Weile, D.S., Michielssen, E., Goldberg, D.E.: Genetic Algorithm Design of Pareto-optimal Broad Band Microwave Absorbers. IEEE Transactions on Electromagnetic Compatibility 38(3), 518–525 (1996)CrossRefGoogle Scholar
  7. 7.
    Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  8. 8.
    Durillo, J.J., Nebro, A.J., Luna, F., Alba, E.: A study of master-slave approaches to parallelize NSGA-II. In: IEEE International Symposium on Parallel and Distributed Processing, pp. 14–18 (2008)Google Scholar
  9. 9.
    Grama, A., Gupta, A., Karypis, G., Kumar, V.: Introduction to Parallel Computing, 2nd edn. Pearson Education Limited, Edinburgh (2003)Google Scholar
  10. 10.
    Amdahl, G.M.: Validity of the single-processor approach to achieving large scale computing capabilities. In: AFIPS Conference Proceedings, vol. 30, pp. 483–485 (1967)Google Scholar
  11. 11.
    Branke, J., Schmeck, H., Deb, K., Reddy, M.: Parallelizing Multi-Objective Evolutionary Algorithms: Cone Separation. In: 2004 Congress on Evolutionary Computation (CEC 2004), pp. 1952–1957 (2004)Google Scholar
  12. 12.
    Deb, K., Zope, P., Jain, S.: Distributed Computing of Pareto-Optimal Solutions with Evolutionary Algorithms. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 534–549. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Streichert, F., Ulmer, H., Zell, A.: Parallelization of Multi-objective Evolutionary Algorithms Using Clustering Algorithms. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 92–107. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Zitzler, E., Deb, K., Thiele, L.: Comparison of Multiobjective Evolutionary Algorithms: Empirical Results. Evolutionary Computation 8(2), 173–195 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Algirdas Lančinskas
    • 1
  • Julius Žilinskas
    • 1
  1. 1.Institute of Mathematics and InformaticsVilnius UniversityVilniusLithuania

Personalised recommendations