Advertisement

Unification of Compiled and Interpreter-Based Pattern Matching Techniques

  • Gergely Varró
  • Anthony Anjorin
  • Andy Schürr
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7349)

Abstract

In this paper, we propose a graph pattern matching framework that produces both a standalone compiled and an interpreter-based engine as a result of a uniform development process. This process uses the same pattern specification and shares all internal data structures, and nearly all internal modules. Additionally, runtime performance measurements have been carried out on both engines with exactly the same parameter settings to assess and reveal the overhead of our interpreter-based solution.

Keywords

model transformation pattern matching interpreter compiled pattern matcher 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Geiger, L., Schneider, C., Reckord, C.: Template- and modelbased code generation for MDA-tools. In: Giese, H., Zündorf, A. (eds.) Proc. of the 3rd International Fujaba Days, Paderborn, Germany, pp. 57–62 (2005), ftp://ftp.upb.de/doc/techreports/Informatik/tr-ri-05-259.pdf
  2. 2.
    Jouault, F., Kurtev, I.: Transforming Models with ATL. In: Bruel, J.-M. (ed.) MoDELS 2005. LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph Transformation, vol. 1: Foundations. World Scientific (1997)Google Scholar
  4. 4.
    Varró, G., Deckwerth, F., Wieber, M., Schürr, A.: An Algorithm for Generating Model-Sensitive Search Plans for EMF Models. In: Hu, Z., de Lara, J. (eds.) ICMT 2012. LNCS, vol. 7307, pp. 224–239. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. 5.
    Geiß, R., Batz, G.V., Grund, D., Hack, S., Szalkowski, A.: GrGen: A Fast SPO-Based Graph Rewriting Tool. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.) ICGT 2006. LNCS, vol. 4178, pp. 383–397. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Varró, G., Varró, D., Friedl, K.: Adaptive graph pattern matching for model transformations using model-sensitive search plans. In: Karsai, G., Taentzer, G. (eds.) Proc. of International Workshop on Graph and Model Transformation. ENTCS, vol. 152, pp. 191–205. Elsevier (2005)Google Scholar
  7. 7.
    Voelter, M.: Best practices for DSLs and model-driven development. Journal of Object Technology 8(6), 79–102 (2009)CrossRefGoogle Scholar
  8. 8.
    Czarnecki, K., Helsen, S.: Feature-based survey of model transformation approaches. IBM Systems Journal 45(3), 621–645 (2006)CrossRefGoogle Scholar
  9. 9.
    Kolovos, D., Rose, L., Paige, R.: The Epsilon book, http://www.eclipse.org/gmt/epsilon/doc/book/
  10. 10.
    Giese, H., Hildebrandt, S., Seibel, A.: Improved flexibility and scalability by interpreting story diagrams. In: Margaria, T., Padberg, J., Taentzer, G. (eds.) Proc. of the 8th International Workshop on Graph Transformation and Visual Modeling Techniques, ECEASST, vol. 18 (2009)Google Scholar
  11. 11.
    Agrawal, A., Karsai, G., Neema, S., Shi, F., Vizhanyo, A.: The design of a language for model transformations. Software and Systems Modeling 5(3), 261–288 (2006)CrossRefGoogle Scholar
  12. 12.
    Rensink, A.: The GROOVE Simulator: A Tool for State Space Generation. In: Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003. LNCS, vol. 3062, pp. 479–485. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin: Advanced Concepts and Tools for In-Place EMF Model Transformations. In: Petriu, D.C., Rouquette, N., Haugen, Ø. (eds.) MODELS 2010, Part I. LNCS, vol. 6394, pp. 121–135. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Schürr, A., Winter, A.J., Zündorf, A.: The PROGRES Approach: Language and Environment. In: Handbook on Graph Grammars and Computing by Graph Transformation, vol. 2: Applications, Languages and Tools, pp. 487–550. World Scientific (1999)Google Scholar
  15. 15.
    Bergmann, G., Ökrös, A., Ráth, I., Varró, D., Varró, G.: Incremental pattern matching in the VIATRA model transformation system. In: Karsai, G., Taentzer, G. (eds.) Proc. of the 3rd International Workshop on Graph and Model Transformation, pp. 25–32. ACM (2008)Google Scholar
  16. 16.
  17. 17.
    Levendovszky, T., Rensink, A., van Gorp, P.: 5th International Workshop on Graph-Based Tools: The Contest, http://is.tm.tue.nl/staff/pvgorp/events/grabats2009/
  18. 18.
    Beaton, W., des Rivieres, J.: Eclipse platform technical overview. Technical report, The Eclipse Foundation (2006)Google Scholar
  19. 19.
    Horváth, Á., Varró, G., Varró, D.: Generic search plans for matching advanced graph patterns. In: Ehrig, K., Giese, H. (eds.) Proc. of the 6th Int. Workshop on Graph Transformation and Visual Modeling Techniques, vol. 6 of ECEASST (2007)Google Scholar
  20. 20.
    Varró, G., Schürr, A., Varró, D.: Benchmarking for graph transformation. In: Proc. of the 2005 IEEE Symposium on Visual Languages and Human-Centric Computing, Dallas, Texas, USA, pp. 79–88. IEEE Computer Society Press (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Gergely Varró
    • 1
  • Anthony Anjorin
    • 1
  • Andy Schürr
    • 1
  1. 1.Real-Time Systems LabTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations