Advertisement

Bidirectional Model Transformation with Precedence Triple Graph Grammars

  • Marius Lauder
  • Anthony Anjorin
  • Gergely Varró
  • Andy Schürr
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7349)

Abstract

Triple Graph Grammars (TGGs) are a rule-based technique with a formal background for specifying bidirectional model transformation. In practical scenarios, the unidirectional rules needed for the forward and backward transformations are automatically derived from the TGG rules in the specification, and the overall transformation process is governed by a control algorithm. Current implementations either have a worst case exponential runtime complexity, based on the number of elements to be processed, or pose such strong restrictions on the class of supported TGGs that practical real-world applications become infeasible. This paper, therefore, introduces a new class of TGGs together with a control algorithm that drops a number of practice-relevant restrictions on TGG rules and still has a polynomial runtime complexity.

Keywords

triple graph grammars control algorithm of unidirectional transformations node precedence analysis rule dependency analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anjorin, A., Lauder, M., Patzina, S., Schürr, A.: eMoflon: Leveraging EMF and Professional CASE Tools. In: Heiß, H.U., Pepper, P., Schlingloff, H., Schneider, J. (eds.) Proc. of MEMWe 2011. LNI, vol. 192. GI (2011)Google Scholar
  2. 2.
    Bohannon, A., Foster, J., Pierce, B., Pilkiewicz, A., Schmitt, A.: Boomerang: Resourceful Lenses for String Data. ACM SIGPLAN Notices 43(1), 407–419 (2008)CrossRefGoogle Scholar
  3. 3.
    Czarnecki, K., Helsen, S.: Feature-based Survey of Model Transformation Approaches. IBM Systems Journal 45(3), 621–645 (2006)CrossRefGoogle Scholar
  4. 4.
    Czarnecki, K., Foster, J.N., Hu, Z., Lämmel, R., Schürr, A., Terwilliger, J.F.: Bidirectional Transformations: A Cross-Discipline Perspective. In: Paige, R.F. (ed.) ICMT 2009. LNCS, vol. 5563, pp. 260–283. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Ehrig, H., Ehrig, K., Ermel, C., Hermann, F., Taentzer, G.: Information Preserving Bidirectional Model Transformations. In: Dwyer, M.B., Lopes, A. (eds.) FASE 2007. LNCS, vol. 4422, pp. 72–86. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transformation. Monographs in Theoretical Computer Science. An EATCS Series. Springer, New York (2006)Google Scholar
  7. 7.
    Giese, H., Hildebrandt, S., Lambers, L.: Toward Bridging the Gap between Formal Semantics and Implementation of Triple Graph Grammars. In: Lúcio, L., Vieira, E., Weißleder, S. (eds.) Proc. of MoDeVVA 2010, pp. 19–24. IEEE (2010)Google Scholar
  8. 8.
    Hermann, F., Ehrig, H., Orejas, F., Czarnecki, K., Diskin, Z., Xiong, Y.: Correctness of Model Synchronization Based on Triple Graph Grammars. In: Whittle, J., Clark, T., Kühne, T. (eds.) MODELS 2011. LNCS, vol. 6981, pp. 668–682. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Hermann, F., Golas, U., Orejas, F.: Efficient Analysis and Execution of Correct and Complete Model Transformations Based on Triple Graph Grammars. In: Bézivin, J., Soley, M.R., Vallecillo, A. (eds.) Proc. of MDI 2010. ICPS, vol. 482, pp. 22–31. ACM (2010)Google Scholar
  10. 10.
    Hidaka, S., Hu, Z., Inaba, K., Kato, H., Nakano, K.: GRoundTram: An Integrated Framework for Developing Well-Behaved Bidirectional Model Transformations. In: Alexander, P., Pasareanu, C., Hosking, J. (eds.) Proc. of ASE 2011, pp. 480–483. IEEE (2011)Google Scholar
  11. 11.
    Kindler, E., Rubin, V., Wagner, R.: An Adaptable TGG Interpreter for In-Memory Model Transformations. In: Schürr, A., Zündorf, A. (eds.) Proc. of Fujaba Days 2004, pp. 35–38 (2004)Google Scholar
  12. 12.
    Klar, F., Lauder, M., Königs, A., Schürr, A.: Extended Triple Graph Grammars with Efficient and Compatible Graph Translators. In: Engels, G., Lewerentz, C., Schäfer, W., Schürr, A., Westfechtel, B. (eds.) Nagl Festschrift. LNCS, vol. 5765, pp. 141–174. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Königs, A.: Model Transformation with Triple Graph Grammars. In: Proc. of MTIP 2005 (2005)Google Scholar
  14. 14.
    Lauder, M., Schlereth, M., Rose, S., Schürr, A.: Model-Driven Systems Engineering: State-of-the-Art and Research Challenges. Bulletin of the Polish Academy of Sciences, Technical Sciences 58(3), 409–422 (2010)CrossRefGoogle Scholar
  15. 15.
    Rose, S., Lauder, M., Schlereth, M., Schürr, A.: A Multidimensional Approach for Concurrent Model Driven Automation Engineering. In: Osis, J., Asnina, E. (eds.) Model-Driven Domain Analysis and Software Development, pp. 90–113. IGI (2011)Google Scholar
  16. 16.
    Schürr, A.: Specification of Graph Translators with Triple Graph Grammars. In: Mayr, E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 151–163. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  17. 17.
    Schürr, A., Klar, F.: 15 Years of Triple Graph Grammars. In: Ehrig, H., Heckel, R., Rozenberg, G., Taentzer, G. (eds.) ICGT 2008. LNCS, vol. 5214, pp. 411–425. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Stevens, P.: A Landscape of Bidirectional Model Transformations. In: Lämmel, R., Visser, J., Saraiva, J. (eds.) GTTSE 2007. LNCS, vol. 5235, pp. 408–424. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Stevens, P.: Bidirectional Model Transformations in QVT: Semantic Issues and Open Questions. SoSym 9(1), 7–20 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Marius Lauder
    • 1
  • Anthony Anjorin
    • 1
  • Gergely Varró
    • 1
  • Andy Schürr
    • 1
  1. 1.Real-Time Systems LabTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations