Bus Bunching Detection by Mining Sequences of Headway Deviations

  • Luís Moreira-Matias
  • Carlos Ferreira
  • João Gama
  • João Mendes-Moreira
  • Jorge Freire de Sousa
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7377)


In highly populated urban zones, it is common to notice headway deviations (HD) between pairs of buses. When these events occur in a bus stop, they often cause bus bunching (BB) in the following bus stops. Several proposals have been suggested to mitigate this problem. In this paper, we propose to find BBS (Bunching Black Spots) – sequences of bus stops where systematic HD events cause the formation of BB. We run a sequence mining algorithm, named PrefixSpan, to find interesting events available in time series. We prove that we can accurately model the BB trip usual pattern like a frequent sequence mining problem. The subsequences proved to be a promising way of identify the route’ schedule points to adjust in order to mitigate such events.


Sequence Mining Bus Bunching Headway Irregularities 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gershenson, C., Pineda, L.: Why Does Public Transport Not Arrive on Time? The Pervasiveness of Equal Headway Instability. PLoS ONE 4 (2009)Google Scholar
  2. 2.
    Daganzo, C.: A Headway-Based approach to eliminate Bus Bunching. Transportation Research Part B 43, 913–921 (2009)CrossRefGoogle Scholar
  3. 3.
    Pilachowski, J.: An approach to reducing bus bunching. PhD. Univ. of California, Berkeley, California (2009)Google Scholar
  4. 4.
    Lin, J., Ruan, M.: Probability-based bus headway regularity measure. IET Intelligent Transport Systems 3, 400–408 (2009)CrossRefGoogle Scholar
  5. 5.
    Matias, L., Gama, J., Mendes-Moreira, J., Sousa, J.F.: Validation of both number and coverage of bus Schedules using AVL data. In: 13th International IEEE Annual Conference on Intelligent Transportation Systems, Funchal, Portugal, pp. 131–136 (2010)Google Scholar
  6. 6.
    Newman, P.: Transit-Oriented Development: An Australian Overview. Transit Oriented Development – Making it Happen (2005)Google Scholar
  7. 7.
    Strathman, J., Kimpel, T., Callas, S.: Headway Deviation Effects on Bus Passenger Loads: Analysis of Tri-Met’s Archived AVL-APC Data (2003)Google Scholar
  8. 8.
    Bellei, G., Gkoumas, K.: Transit vehicles’ headway distribution and service irregularity. Public Transport 2, 269–289 (2010)CrossRefGoogle Scholar
  9. 9.
    Wang, F.: Toward Intelligent Transportation Systems for the 2008 Olympics. IEEE Intelligent Systems 18, 8–11 (2003)Google Scholar
  10. 10.
    Newell, G., Potts, R.: Maintaining a bus schedule. In: 2nd Australian Road Research Board, pp. 388–393 (Year)Google Scholar
  11. 11.
    Zhao, J., Dessouky, M., Bukkapatnam, S.: Optimal Slack Time for Schedule-Based Transit Operations. Transportation Science 40, 529–539 (2006)CrossRefGoogle Scholar
  12. 12.
    Strathman, J., Kimpel, T., Dueker, K.: Automated bus dispatching, operations control and service reliability. Transportation Resesearch Record 1666, 28–36 (1999)CrossRefGoogle Scholar
  13. 13.
    Mishalani, R.: Passenger Wait Time Perceptions at Bus Stops: Empirical Results and Impact on Evaluating Real-Time Bus Arrival Information. Journal of Public Transportation 2 (2006)Google Scholar
  14. 14.
    Newell, G.: Control of pairing of vehicles on a public transportation route, two vehicles, one control point. Transportation Science 8, 248–264 (1974)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Powell, W., Sheffi, Y.: A Probabilistic Model of Bus Route Performance. Transportation Science 17, 376–404 (1983)CrossRefGoogle Scholar
  16. 16.
    Nicholson, A., Mei, K.: Assessing the effect of congestion on bus service reliability. In: 2nd International Symposium on Transport Network Reliability, Christchurch, NZ (2004)Google Scholar
  17. 17.
    Furth, P., Hemily, B., Muller, T., Strathman, J.: Uses of Archived AVL-APC Data to Improve Transit Performance and Management: Review and Potential. Transportation Research Board (2003)Google Scholar
  18. 18.
    Vuchic, V.: Transit Systems, Operations and Networks. Urban Transit. Wiley, New York (2005)Google Scholar
  19. 19.
    Agrawal, R., Srikant, R.: Mining Sequential Patterns. In: Eleventh International Conference on Data Engineering, Taipei, Taiwan, pp. 3–14 (1995)Google Scholar
  20. 20.
    Srikant, R., Agrawal, R.: Mining Sequential Patterns: Generalizations and Performance Improvements. In: 5th International Conference on Extending Database Technology, Avignon, France, pp. 3–17 (1996)Google Scholar
  21. 21.
    Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules. In: 20th International Conference on Very Large Data Bases, Santiago de Chile, Chile, pp. 487–499 (1994)Google Scholar
  22. 22.
    Jian, P., Han, J., Mortazavi-asl, B., Pinto, H., Chen, Q., Dayal, U., Hsu, M.: PrefixSpan: Mining Sequential Patterns Efficiently by Prefix-Projected Pattern Growth. In: 17th International Conference on Data Engineering, Heidelberg, Germany, pp. 215–224 (2001)Google Scholar
  23. 23.
    TRB: Transit Capacity Quality of Service Manual. Transit Cooperative Research Program Web Document No. 6. Transportation Research Board - National Research Council, Washington, D.C. (1999)Google Scholar
  24. 24.
    Gama, J., Gaber, M.: Learning from Data Streams, New York (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Luís Moreira-Matias
    • 1
    • 2
  • Carlos Ferreira
    • 2
    • 3
  • João Gama
    • 2
    • 5
  • João Mendes-Moreira
    • 1
    • 2
  • Jorge Freire de Sousa
    • 4
  1. 1.Departamento de Engenharia Informàtica, Faculdade de EngenhariaUniversidade do PortoPortoPortugal
  2. 2.LIAAD-INESC Porto L.A.PortoPortugal
  3. 3.Instituto Superior de Engenharia do Porto, Instituto Politécnico do PortoPortoPortugal
  4. 4.Departamento de Engenharia Industrial e Gestão, Faculdade de EngenhariaUniversidade do PortoPortoPortugal
  5. 5.Faculdade de EconomiaUniversidade do PortoPortoPortugal

Personalised recommendations