Wind Turbines Fault Diagnosis Using Ensemble Classifiers

  • Pedro Santos
  • Luisa F. Villa
  • Aníbal Reñones
  • Andrés Bustillo
  • Jesús Maudes
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7377)


Fault diagnosis in machines that work under a wide range of speeds and loads is currently an active area of research. Wind turbines are one of the most recent examples of these machines in industry. Conventional vibration analysis applied to machines throughout their operation is of limited utility when the speed variation is too high. This work proposes an alternative methodology for fault diagnosis in machines: the combination of angular resampling techniques for vibration signal processing and the use of data mining techniques for the classification of the operational state of wind turbines. The methodology has been validated over a test-bed with a large variation of speeds and loads which simulates, on a smaller scale, the real conditions of wind turbines. Over this test-bed two of the most common typologies of faults in wind turbines have been generated: imbalance and misalignment. Several data mining techniques have been used to analyze the dataset obtained by order analysis, having previously processed signals with angular resampling technique. Specifically, the methods used are ensemble classifiers built with Bagging, Adaboost, Geneneral Boosting Projection and Rotation Forest; the best results having been achieved with Adaboost using C4.5 decision trees as base classifiers.


fault diagnosis wind turbines ensemble classifiers angular resampling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alonso, C.J., Prieto, O.J., Rodríguez, J.J., Bregón, A., Pulido, B.: Stacking Dynamic Time Warping for the Diagnosis of Dynamic Systems. In: Borrajo, D., Castillo, L., Corchado, J.M. (eds.) CAEPIA 2007. LNCS (LNAI), vol. 4788, pp. 11–20. Springer, Heidelberg (2007), CrossRefGoogle Scholar
  2. 2.
    Barszcz, T., Randall, R.B.: Application of spectral kurtosis for detection of a tooth crack in the planetary gear of a wind turbine. Mechanical Systems and Signal Processing 23(4), 1352–1365 (2009), CrossRefGoogle Scholar
  3. 3.
    Bartelmus, W., Zimroz, R.: Vibration condition monitoring of planetary gearbox under varying external load. Mechanical Systems and Signal Processing 23(1), 246–257 (2009),, special Issue: Non-linear Structural DynamicsCrossRefGoogle Scholar
  4. 4.
    Blunt, D.M., Keller, J.A.: Detection of a fatigue crack in a uh-60a planet gear carrier using vibration analysis. Mechanical Systems and Signal Processing 20(8), 2095–2111 (2006), CrossRefGoogle Scholar
  5. 5.
    Combet, F., Zimroz, R.: A new method for the estimation of the instantaneous speed relative fluctuation in a vibration signal based on the short time scale transform. Mechanical Systems and Signal Processing 23(4), 1382–1397 (2009)CrossRefGoogle Scholar
  6. 6.
    Davies, A.: Handbook of condition monitoring: techniques and methodology. Chapman & Hall (1998),
  7. 7.
    Dietterich, T.: Ensemble Methods in Machine Learning. In: MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000),, 10.1007, doi:10.1007/3-540-45014-9_1CrossRefGoogle Scholar
  8. 8.
    Donat, W., Choi, K., An, W., Singh, S., Pattipati, K.: Data visualization, data reduction and classifier fusion for intelligent fault diagnosis in gas turbine engines. Journal of Engineering for Gas Turbines and Power 130(4), 041602 (2008), CrossRefGoogle Scholar
  9. 9.
    El-Gamal, M., Mohamed, M.: Ensembles of neural networks for fault diagnosis in analog circuits. Journal of Electronic Testing 23, 323–339 (2007),, doi:10.1007/s10836-006-0710-1CrossRefGoogle Scholar
  10. 10.
    García-Pedrajas, N., García-Osorio, C.: Constructing ensembles of classifiers using supervised projection methods based on misclassified instances. Expert Syst. Appl. 38(1), 343–359 (2011)CrossRefGoogle Scholar
  11. 11.
    Hameed, Z., Hong, Y., Cho, Y., Ahn, S., Song, C.: Condition monitoring and fault detection of wind turbines and related algorithms: A review. Renewable and Sustainable energy reviews 13(1), 1–39 (2009)CrossRefGoogle Scholar
  12. 12.
    Hu, Q., He, Z., Zhang, Z., Zi, Y.: Fault diagnosis of rotating machinery based on improved wavelet package transform and svms ensemble. Mechanical Systems and Signal Processing 21(2), 688–705 (2007), CrossRefGoogle Scholar
  13. 13.
    Kuncheva, L.: Combining classifiers: Soft computing solutions. Pattern Recognition: From Classical to Modern Approaches, 427–451 (2001)Google Scholar
  14. 14.
    Kuncheva, L.: Combining pattern classifiers: methods and algorithms. Wiley-Interscience (2004),
  15. 15.
    Kuo, B., Ko, L., Pai, C., Landgrebe, D.: Regularized feature extractions for hyperspectral data classification. In: 2003 IEEE International Proceedings of Geoscience and Remote Sensing Symposium, IGARSS 2003, vol. 3, pp. 1767–1769. IEEE (2003)Google Scholar
  16. 16.
    Rodriguez, J., Kuncheva, L., Alonso, C.: Rotation forest: A new classifier ensemble method. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(10), 1619–1630 (2006)CrossRefGoogle Scholar
  17. 17.
    Rokach, L.: Ensemble-based classifiers. Artificial Intelligence Review 33, 1–39 (2010),, doi:10.1007/s10462-009-9124-7CrossRefGoogle Scholar
  18. 18.
    Samuel, P.D., Pines, D.J.: A review of vibration-based techniques for helicopter transmission diagnostics. Journal of Sound and Vibration 282(1-2), 475–508 (2005), CrossRefGoogle Scholar
  19. 19.
    Stander, C.J., Heyns, P.S.: Instantaneous angular speed monitoring of gearboxes under non-cyclic stationary load conditions. Mechanical Systems and Signal Processing 19(4), 817–835 (2005), CrossRefGoogle Scholar
  20. 20.
    Stander, C.J., Heyns, P., Schoombie, W.: Using vibration monitoring for local fault detection on gears operating under fluctuating load conditions. Mechanical Systems and Signal Processing 16(6), 1005–1024 (2002), CrossRefGoogle Scholar
  21. 21.
    Stander, C., Heyns, P.: Transmission path phase compensation for gear monitoring under fluctuating load conditions. Mechanical Systems and Signal Processing 20(7), 1511–1522 (2006), CrossRefGoogle Scholar
  22. 22.
    Villa, L.F., Renones, A., Perán, J.R., de Miguel, L.J.: Angular resampling for vibration analysis in wind turbines under non-linear speed fluctuation. Mechanical Systems and Signal Processing 25(6), 2157–2168 (2011),, interdisciplinary Aspects of Vehicle DynamicsCrossRefGoogle Scholar
  23. 23.
    Villa, L.F., Renones, A., Perán, J.R., de Miguel, L.J.: Statistical fault diagnosis based on vibration analysis for gear test-bench under non-stationary conditions of speed and load. In: Mechanical Systems and Signal Processing (in Press, 2012) a(ccepted manuscrit), doi:10.1016/j.ymssp.2011.12.013Google Scholar
  24. 24.
    Zhan, Y., Makis, V., Jardine, A.K.: Adaptive state detection of gearboxes under varying load conditions based on parametric modelling. Mechanical Systems and Signal Processing 20(1), 188–221 (2006), CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Pedro Santos
    • 1
  • Luisa F. Villa
    • 2
  • Aníbal Reñones
    • 2
  • Andrés Bustillo
    • 1
  • Jesús Maudes
    • 1
  1. 1.Department of Civil EngineeringUniversity of BugosBurgosSpain
  2. 2.CARTIF FoundationParque Tecnológico de BoecilloBoecilloSpain

Personalised recommendations