Generalizing Monotonicity Inferences to Opposition Inferences

  • Ka-Fat Chow
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7218)


This paper generalizes the notion of monotonicities to opposition properties (OPs). Some propositions regarding the OPs of determiners will be proposed and proved. We will also define the notion of OP-chain and deduce a condition that enables us to determine the OPs of an iterated quantifier in its predicates based on the OPs of its constituent determiners.


monotonicity inferences opposition inferences opposition properties OP-chain Generalized Quantifier Theory Natural Logic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    van Benthem, J.: A Brief History of Natural Logic. Technical Report PP-2008-05, Institute for Logic, Language and Computation (2008)Google Scholar
  2. 2.
    van Eijck, J.: Natural Logic for Natural Language. In: ten Cate, B.D., Zeevat, H.W. (eds.) TbiLLC 2005. LNCS (LNAI), vol. 4363, pp. 216–230. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Hirschberg, J.B.: A Theory of Scalar Implicature. PhD thesis, University of Pennsylvania (1985)Google Scholar
  4. 4.
    Icard, T.: Exclusion and Containment in Natural Language. Accepted to Studia Logica (2011)Google Scholar
  5. 5.
    Jones, S.: Antonymy: A corpus-based perspective. Routledge, London (2002)Google Scholar
  6. 6.
    MacCartney, B.: Natural Language Inference. PhD thesis, Stanford University (2009)Google Scholar
  7. 7.
    MacCartney, B., Manning, C.D.: An extended model of natural logic. In: Proceedings of the Eighth International Conference on Computational Semantics (2009)Google Scholar
  8. 8.
    Peters, S., Westerståhl, D.: Quantifiers in Language and Logic. Clarendon Press, Oxford (2006)Google Scholar
  9. 9.
    Zuber, R.: Symmetric and contrapositional quantifiers. Journal of Logic, Language and Information 16(1), 1–13 (2007)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ka-Fat Chow
    • 1
  1. 1.The Hong Kong Polytechnic UniversityHong Kong

Personalised recommendations