Human Behavior Understanding for Inducing Behavioral Change: Social and Theoretical Aspects

  • Bruno Lepri
  • Albert Ali Salah
  • Fabio Pianesi
  • Alex Sandy Pentland
Part of the Communications in Computer and Information Science book series (CCIS, volume 277)


The 2nd International Workshop on Human Behavior Understanding (HBU’11) focuses on inducing behavioral change via computer systems that can analyse human behavior and communicate persuasive messages accordingly. While analysis techniques that involve pattern recognition, signal processing and machine learning are very relevant to this aim, the underlying psychological and sociological aspects of inducing behavioral change cannot be neglected. This paper provides a framework for assessing the impact of social factors for these applications, and discusses the role of social mediation of behaviors and attitudes.


Human Behavior Social Signal Multimodal Interface Persuasive Technology Persuasive Message 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aharony, N., Pan, W., Ip, C., Khayal, I., Pentland, A.: Social fMRI: Investigating and shaping social mechanisms in the real world. Pervasive and Mobile Computing (2011)Google Scholar
  2. 2.
    Ajzen, I.: From intentions to actions: A theory of planned behavior. In: Kuhl, J., Beckmann, J. (eds.) Action Control, from Cognition to Behavior, pp. 11–39. Springer (1985)Google Scholar
  3. 3.
    Ambady, N., Hallahan, M., Rosenthal, R.: On judging and being judged accurately in zero-acquaintance situations. Journal of Personality and Social Psychology 69(3), 518–529 (1995)CrossRefGoogle Scholar
  4. 4.
    Ambady, N., Rosenthal, R.: Thin slices of expressive behavior as predictors of interpersonal consequences: A meta-analysis. Psychological Bulletin 111(2), 256–274 (1992)CrossRefGoogle Scholar
  5. 5.
    Bargh, J.A.: The automaticity of everyday life. Lawrence Erlbaum Associates Publishers (1997)Google Scholar
  6. 6.
    Bargh, J.A., Chen, M., Burrows, L.: Automaticity of social behavior: Direct effects of trait construct and stereotype activation on action. Journal of Personality and Social Psychology 71(2), 230 (1996)CrossRefGoogle Scholar
  7. 7.
    Barsade, S.G.: The ripple effect: Emotional contagion and its influence on group behavior. Administrative Science Quarterly, 644–675 (2002)Google Scholar
  8. 8.
    Bem, D.J.: Self-perception theory. Advances in Experimental Social Psychology 6, 1–62 (1972)CrossRefGoogle Scholar
  9. 9.
    Cacioppo, J.T., Petty, R.E.: The need for cognition. Journal of Personality and Social Psychology 42(1), 116–131 (1982)CrossRefGoogle Scholar
  10. 10.
    Centola, D., Macy, M.: Complex contagions and the weakness of long ties. American Journal of Sociology 113(3), 702 (2007)CrossRefGoogle Scholar
  11. 11.
    Chartrand, T.L., Bargh, J.A.: The chameleon effect: The perception–behavior link and social interaction. Journal of Personality and Social Psychology 76(6), 893 (1999)CrossRefGoogle Scholar
  12. 12.
    Chittaranjan, G., Blom, J., Gatica-Perez, D.: Who’s who with big-five: Analyzing and classifying personality traits with smartphones. In: Proc. 15th Annual Int. Symp. on Wearable Computers, ISWC (2011)Google Scholar
  13. 13.
    Christakis, N.A., Fowler, J.H.: The collective dynamics of smoking in a large social network. New England Journal of Medicine 358(21), 2249–2258 (2008)CrossRefGoogle Scholar
  14. 14.
    Cox, D.F., Bauer, R.A.: Self-confidence and persuasibility in women. Public Opinion Quarterly, 453–466 (1964)Google Scholar
  15. 15.
    Curhan, J.R., Pentland, A.: Thin slices of negotiation: Predicting outcomes from conversational dynamics within the first 5 minutes. Journal of Applied Psychology 92(3), 802–811 (2007)CrossRefGoogle Scholar
  16. 16.
    DiMicco, J.M., Bender, W.: Group Reactions to Visual Feedback Tools. In: de Kort, Y.A.W., IJsselsteijn, W.A., Midden, C., Eggen, B., Fogg, B.J. (eds.) PERSUASIVE 2007. LNCS, vol. 4744, pp. 132–143. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Dong, W., Lepri, B., Cappelletti, A., Pentland, A.S., Pianesi, F., Zancanaro, M.: Using the influence model to recognize functional roles in meetings. In: Proc. 9th Int. Conf. on Multimodal Interfaces, pp. 271–278. ACM (2007)Google Scholar
  18. 18.
    Eagle, N., Pentland, A.S., Lazer, D.: Inferring friendship network structure by using mobile phone data. Proc. National Academy of Sciences 106(36), 15274–15278 (2009)CrossRefGoogle Scholar
  19. 19.
    Fleeson, W.: Toward a structure-and process-integrated view of personality: Traits as density distributions of states. Journal of Personality and Social Psychology 80(6), 1011–1027 (2001)CrossRefGoogle Scholar
  20. 20.
    Fogg, B.: Persuasive technologies. Communications of the ACM 42(5), 27–29 (1999)CrossRefGoogle Scholar
  21. 21.
    Friedkin, N.E.: The attitude-behavior linkage in behavioral cascades. Social Psychology Quarterly 73(2), 196–213 (2010)Google Scholar
  22. 22.
    Gatica-Perez, D.: Automatic nonverbal analysis of social interaction in small groups: A review. Image and Vision Computing 27(12), 1775–1787 (2009)CrossRefGoogle Scholar
  23. 23.
    Gifford, R.: A lens-mapping framework for understanding the encoding and decoding of interpersonal dispositions in nonverbal behavior. Journal of Personality and Social Psychology 66(2), 398–412 (1994)CrossRefGoogle Scholar
  24. 24.
    Granovetter, M.: Threshold models of collective behavior. American Journal of Sociology, 1420–1443 (1978)Google Scholar
  25. 25.
    Hall, J., Coats, E., LeBeau, L.: Nonverbal behavior and the vertical dimension of social relations: A meta-analysis. Psychological Bulletin 131(6), 898 (2005)CrossRefGoogle Scholar
  26. 26.
    Harvey, O.J., Consalvi, C.: Status and conformity to pressures in informal groups. The Journal of Abnormal and Social Psychology 60(2), 182–187 (1960)CrossRefGoogle Scholar
  27. 27.
    Hung, H., Jayagopi, D., Yeo, C., Friedland, G., Ba, S., Odobez, J.M., Ramchandran, K., Mirghafori, N., Gatica-Perez, D.: Using audio and video features to classify the most dominant person in a group meeting. In: ACM Multimedia, vol. 3. Citeseer (2007)Google Scholar
  28. 28.
    Hung, H., Jayagopi, D., Ba, S., Odobez, J., Gatica-Perez, D.: Investigating automatic dominance estimation in groups from visual attention and speaking activity. In: Proc. 10th Int. Conf. on Multimodal Interfaces. pp. 233–236. ACM (2008)Google Scholar
  29. 29.
    Janis, I.L.: Personality correlates of susceptibility to persuasion. Journal of Personality 22(4), 504–518 (1954)CrossRefGoogle Scholar
  30. 30.
    Janis, I.L.: Anxiety indices related to susceptibility to persuasion. The Journal of Abnormal and Social Psychology 51(3), 663 (1955)CrossRefGoogle Scholar
  31. 31.
    Jayagopi, D.B., Hung, H., Yeo, C., Gatica-Perez, D.: Modeling dominance in group conversations using nonverbal activity cues. IEEE Transactions on Audio, Speech, and Language Processing 17(3), 501–513 (2009)CrossRefGoogle Scholar
  32. 32.
    Kenny, D.A., Horner, C., Kashy, D.A., Chu, L.: Consensus at zero acquaintance: Replication, behavioral cues, and stability. Journal of Personality and Social Psychology 62(1), 88–97 (1992)CrossRefGoogle Scholar
  33. 33.
    Kim, T., Chang, A., Holland, L., Pentland, A.: Meeting mediator: enhancing group collaborationusing sociometric feedback. In: Proc. 2008 ACM Conf. on Computer Supported Cooperative Work, pp. 457–466. ACM (2008)Google Scholar
  34. 34.
    Kim, T., Olguín, D.O., Waber, B.N., Pentland, A.: Sensor-based feedback systems in organizational computing. In: Proc. Int. Conf. on Computational Science and Engineering, vol. 4, pp. 966–969. IEEE (2009)Google Scholar
  35. 35.
    Lepri, B., Mana, N., Cappelletti, A., Pianesi, F.: Automatic prediction of individual performance from thin slices of social behavior. In: Proc. 17th ACM Int. Conf. on Multimedia, pp. 733–736. ACM (2009)Google Scholar
  36. 36.
    Lepri, B., Mana, N., Cappelletti, A., Pianesi, F., Zancanaro, M.: Modeling the Personality of Participants During Group Interactions. In: Houben, G.-J., McCalla, G., Pianesi, F., Zancanaro, M. (eds.) UMAP 2009. LNCS, vol. 5535, pp. 114–125. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  37. 37.
    Lepri, B., Subramanian, R., Kalimeri, K., Staiano, J., Pianesi, F., Sebe, N.: Employing social gaze and speaking activity for automatic determination of the extraversion trait. In: Int. Conf. on Multimodal Interfaces and the Workshop on Machine Learning for Multimodal Interaction, ICMI-MLMI, pp. 7:1–7:8. ACM, New York (2010)Google Scholar
  38. 38.
    Madan, A., Cebrian, M., Lazer, D., Pentland, A.: Social sensing for epidemiological behavior change. In: Proc. 12th ACM Int. Conf. on Ubiquitous Computing, pp. 291–300. ACM, New York (2010)Google Scholar
  39. 39.
    Madan, A., Farrahi, K., Gatica-Perez, D., Pentland, A.S.: Pervasive Sensing to Model Political Opinions in Face-to-Face Networks. In: Lyons, K., Hightower, J., Huang, E.M. (eds.) Pervasive 2011. LNCS, vol. 6696, pp. 214–231. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  40. 40.
    Madan, A., Moturu, S.T., Lazer, D., Pentland, A.S.: Social sensing: obesity, unhealthy eating and exercise in face-to-face networks. In: Wireless Health 2010, WH 2010, pp. 104–110. ACM, New York (2010)CrossRefGoogle Scholar
  41. 41.
    Mairesse, F., Walker, M.: Automatic recognition of personality in conversation. In: Proceedings of the Human Language Technology Conference of the NAACL, pp. 85–88. Association for Computational Linguistics (2006)Google Scholar
  42. 42.
    Mairesse, F., Walker, M.: A personality-based framework for utterance generation in dialogue applications. In: Proc. of the AAAI Spring Symposium on Emotion, Personality and Behavior (2008)Google Scholar
  43. 43.
    Mason, W.A., Conrey, F.R., Smith, E.R.: Situating social influence processes: Dynamic, multidirectional flows of influence within social networks. Personality and Social Psychology Review 11(3), 279 (2007)CrossRefGoogle Scholar
  44. 44.
    Mast, M.S.: Dominance as expressed and inferred through speaking time. Human Communication Research 28(3), 420–450 (2002)Google Scholar
  45. 45.
    Pentland, A.: Honest signals: how they shape our world. The MIT Press (2008)Google Scholar
  46. 46.
    Petty, R.E., Cacioppo, J.T.: The elaboration likelihood model of persuasion. Advances in Experimental Social Psychology 19(1), 123–205 (1986)CrossRefGoogle Scholar
  47. 47.
    Pianesi, F., Zancanaro, M., Not, E., Leonardi, C., Falcon, V., Lepri, B.: Multimodal support to group dynamics. Personal and Ubiquitous Computing 12(3), 181–195 (2008)CrossRefGoogle Scholar
  48. 48.
    Reeves, B., Nass, C.: The Media Equation: How people treat computers, television, and new media like real people and places. CSLI Publications, Cambridge University Press (1996)Google Scholar
  49. 49.
    Rienks, R., Heylen, D., van der Weijden, E.: Argument diagramming of meeting conversations. In: Multimodal Multiparty Meeting Processing, Workshop at the 7th Int. Conf. on Multimodal Interfaces, pp. 85–92 (2005)Google Scholar
  50. 50.
    Rienks, R., Zhang, D., Gatica-Perez, D., Post, W.: Detection and application of influence rankings in small group meetings. In: Proc. 8th Int. Conf. on Multimodal Interfaces, pp. 257–264. ACM (2006)Google Scholar
  51. 51.
    Salah, A.A., Lepri, B., Pianesi, F., Pentland, A.S.: Human Behavior Understanding for Inducing Behavioral Change: Application Perspectives. In: Salah, A.A., Lepri, B. (eds.) HBU 2011. LNCS, vol. 7065, pp. 1–15. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  52. 52.
    Salah, A.A., Pantic, M., Vinciarelli, A.: Recent developments in social signal processing. In: Proc. IEEE Int. Conf. on Systems, Man, and Cybernetics (2011)Google Scholar
  53. 53.
    Schmid Mast, M., Murphy, N., Hall, J.: A brief review of interpersonal sensitivity: Measuring accuracy in perceiving others, pp. 163–185. University of the West Indies Press, Trinidad (2006)Google Scholar
  54. 54.
    Schmid Mast, M., Sieverding, M., Esslen, M., Graber, K., Jäncke, L.: Masculinity causes speeding in young men. Accident Analysis & Prevention 40(2), 840–842 (2008)CrossRefGoogle Scholar
  55. 55.
    Staiano, J., Lepri, B., Kalimeri, K., Sebe, N., Pianesi, F.: Contextual modeling of personality states’ dynamics in face-to-face interactions. In: Proc. IEEE Social Computing (2011)Google Scholar
  56. 56.
    Sturm, J., Herwijnen, O., Eyck, A., Terken, J.: Influencing social dynamics in meetings through a peripheral display. In: Proc. 9th Int. Conf. on Multimodal Interfaces, pp. 263–270. ACM (2007)Google Scholar
  57. 57.
    Watts, D.J., Dodds, P.S.: Influentials, networks, and public opinion formation. Journal of Consumer Research 34(4), 441–458 (2007)CrossRefGoogle Scholar
  58. 58.
    Zahavi, A., Zahavi, A., Balaban, A., Ely, M.: The handicap principle: a missing piece of Darwin’s puzzle. Oxford University Press, USA (1999)Google Scholar
  59. 59.
    Zancanaro, M., Lepri, B., Pianesi, F.: Automatic detection of group functional roles in face to face interactions. In: Proc. 8th Int. Conf. on Multimodal Interfaces, pp. 28–34. ACM (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Bruno Lepri
    • 1
    • 2
  • Albert Ali Salah
    • 3
  • Fabio Pianesi
    • 1
  • Alex Sandy Pentland
    • 2
  1. 1.FBKPovoItaly
  2. 2.MIT Media LabCambridgeUSA
  3. 3.Department of Computer EngineeringBoğaziçi UniversityIstanbulTurkey

Personalised recommendations