Score-P: A Joint Performance Measurement Run-Time Infrastructure for Periscope, Scalasca, TAU, and Vampir

  • Andreas Knüpfer
  • Christian Rössel
  • Dieter an Mey
  • Scott Biersdorff
  • Kai Diethelm
  • Dominic Eschweiler
  • Markus Geimer
  • Michael Gerndt
  • Daniel Lorenz
  • Allen Malony
  • Wolfgang E. Nagel
  • Yury Oleynik
  • Peter Philippen
  • Pavel Saviankou
  • Dirk Schmidl
  • Sameer Shende
  • Ronny Tschüter
  • Michael Wagner
  • Bert Wesarg
  • Felix Wolf
Conference paper

Abstract

This paper gives an overview about the Score-P performance measurement infrastructure which is being jointly developed by leading HPC performance tools groups. It motivates the advantages of the joint undertaking from both the developer and the user perspectives, and presents the design and components of the newly developed Score-P performance measurement infrastructure. Furthermore, it contains first evaluation results in comparison with existing performance tools and presents an outlook to the long-term cooperative development of the new system.

References

  1. 1.
    Adhianto, L., Banerjee, S., Fagan, M., Krentel, M., Marin, G., Mellor-Crummey, J., Tallent, N.R.: HPCTOOLKIT: tools for performance analysis of optimized parallel programs. Concurr. Comput. Pract. Exp. 22(6), 685–701 (2010). doi: 10.1002/cpe.1553. http://dx.doi.org/10.1002/cpe.1553
  2. 2.
    Benedict, S., Petkov, V., Gerndt, M.: PERISCOPE: an online-based distributed performance analysis tool. In: Mller, M.S., Resch, M.M., Schulz, A., Nagel, W.E. (eds.) Tools for High Performance Computing 2009, pp. 1–16. Springer, Berlin/Heidelberg (2010). http://dx.doi.org/10.1007/978-3-642-11261-4_1
  3. 3.
    Eschweiler, D., Wagner, M., Geimer, M., Knüpfer, A., Nagel, W.E., Wolf, F.: Open trace format 2 – the next generation of scalable trace formats and support libraries. In: Proceedings of the International Conference on Parallel Computing (ParCo), Ghent (2011). (to appear)Google Scholar
  4. 4.
    Frings, W., Wolf, F., Petkov, V.: Scalable massively parallel i/o to task-local files. In: Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis, SC ’09, pp. 17:1–17:11. ACM, New York, NY (2009). doi: http://doi.acm.org/10.1145/1654059.1654077. http://doi.acm.org/10.1145/1654059.1654077
  5. 5.
    Fürlinger, K., Gerndt, M.: ompP – a profiling tool for OpenMP. In: 1st International Workshop, IWOMP 2005, Eugene, OR, USA, June 1–4, 2005. LNCS 4315, SpringerGoogle Scholar
  6. 6.
    Geimer, M., Shende, S.S., Malony, A.D., Wolf, F.: A generic and configurable source-code instrumentation component. In: ICCS 2009: Proceedings of the 9th International Conference on Computational Science, pp. 696–705. Springer, Berlin (2009)Google Scholar
  7. 7.
    Geimer, M., Saviankou, P., Strube, A., Szebenyi, Z., Wolf, F., Wylie, B.J.N.: Further improving the scalability of the Scalasca toolset. In: Proceedings of PARA 2010: State of the Art in Scientific and Parallel Computing, Minisymposium Scalable Tools for High Performance Computing, Reykjavik. Springer, Berlin (2010)Google Scholar
  8. 8.
    Geimer, M., Wolf, F., Wylie, B.J., Ábrahám, E., Becker, D., Mohr, B.: The scalasca performance toolset architecture. Concurr. Comput. Pract. Exp. 22(6), 702–719 (2010). doi: 10.1002/cpe.1556Google Scholar
  9. 9.
    Geimer, M., Hermanns, M.A., Siebert, C., Wolf, F., Wylie, B.J.N.: Scaling performance tool MPI communicator management. In: Proceedings of the 18th European MPI Users’ Group Meeting (EuroMPI), Santorini. Lecture Notes in Computer Science, vol. 6960, pp. 178–187. Springer, Berlin (2011). doi: 10.1007/978-3-642-24449-0_21Google Scholar
  10. 10.
    Knüpfer, A., Brendel, R., Brunst, H., Mix, H., Nagel, W.E.: Introducing the open trace format (OTF). In: Computational Science ICCS 2006: 6th International Conference, LNCS 3992. Springer, Reading (2006)Google Scholar
  11. 11.
    Knüpfer, A., Brunst, H., Doleschal, J., Jurenz, M., Lieber, M., Mickler, H., Müller, M.S., Nagel, W.E.: The vampir performance analysis tool set. In: Resch, M., Keller, R., Himmler, V., Krammer, B., Schulz, A. (eds.) Tools for High Performance Computing, pp. 139–155. Springer, Berlin (2008)Google Scholar
  12. 12.
    Labarta, J., Gimenez, J., Martínez, E., González, P., Harald, S., Llort, G., Aguilar, X.: Scalability of tracing and visualization tools. In: Joubert, G.R., Nagel, W.E., Peters, F.J., Plata, O.G., Tirado, P., Zapata, E.L. (eds.) Parallel Computing: Current and Future Issues of High-End Computing, Proceedings of the International Conference ParCo 2005, Jülich, 13–16 Sept 2005. Department of Computer Architecture, University of Malaga, Spain, John von Neumann Institute for Computing Series, vol. 33, pp. 869–876. Central Institute for Applied Mathematics, Jülich (2005)Google Scholar
  13. 13.
    Lorenz, D., Mohr, B., Rössel, C., Schmidl, D., Wolf, F.: How to reconcile event-based performance analysis with tasking in OpenMP. In: proceedings of 6th International Workshop on OpenMP (IWOMP), Tsukuba. LNCS, vol. 6132, pp. 109–121. Springer, Berlin (2010)Google Scholar
  14. 14.
    Mohr, B., Malony, A.D., Shende, S., Wolf, F.: Design and prototype of a performance tool interface for OpenMP. J. Supercomput. 23(1), 105–128 (2002)Google Scholar
  15. 15.
    OpenMP Architecture Review Board: OpenMP application program interface, Version 3.0. http://www.openmp.org/mp-documents/spec30.pdf
  16. 16.
    Shende, S., Malony, A.D.: The TAU parallel performance system, SAGE publications. Int. J. High Perform. Comput. Appl. 20(2), 287–331 (2006)Google Scholar
  17. 17.
    Steppeler, J., Doms, G., Schttler, U., Bitzer, H.W., Gassmann, A., Damrath, U., Gregoric, G.: Meso-gamma scale forecasts using the nonhydrostatic model lm. Meteorol. Atmos. Phys. 82, 75–96 (2003). http://dx.doi.org/10.1007/s00703-001-0592-9. 10.1007/s00703-001-0592-9
  18. 18.
    Szebenyi, Z., Wolf, F., Wylie, B.J.N.: Space-efficient time-series call-path profiling of parallel applications. In: Proceedings of the ACM/IEEE Conference on Supercomputing (SC09), Portland. ACM, New York (2009)Google Scholar
  19. 19.
    Wolf, F., Mohr, B.: EPILOG binary trace-data format. Technical Report FZJ-ZAM-IB-2004-06, Forschungszentrum Jülich (2004)Google Scholar
  20. 20.
    Wu, C.E., Bolmarcich, A., Snir, M., Wootton, D., Parpia, F., Chan, A., Lusk, E., Gropp, W.: From trace generation to visualization: a performance framework for distributed parallel systems. In: Proceedings of SC2000: High Performance Networking and Computing, Dallas (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Andreas Knüpfer
    • 1
  • Christian Rössel
    • 1
  • Dieter an Mey
    • 1
  • Scott Biersdorff
    • 1
  • Kai Diethelm
    • 1
  • Dominic Eschweiler
    • 1
  • Markus Geimer
    • 1
  • Michael Gerndt
    • 1
  • Daniel Lorenz
    • 1
  • Allen Malony
    • 1
  • Wolfgang E. Nagel
    • 1
  • Yury Oleynik
    • 1
  • Peter Philippen
    • 1
  • Pavel Saviankou
    • 1
  • Dirk Schmidl
    • 1
  • Sameer Shende
    • 1
  • Ronny Tschüter
    • 1
  • Michael Wagner
    • 1
  • Bert Wesarg
    • 1
  • Felix Wolf
    • 1
  1. 1.ZIH, TU DresdenDresdenGermany

Personalised recommendations