Learning in Rough-Neuro-Fuzzy System for Data with Missing Values

  • Bartosz A. Nowak
  • Robert K. Nowicki
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7203)


Rough-neuro-fuzzy systems offer suitable way for classifying data with missing values. The paper presents a new implementation of gradient learning in the case of missing input data which has been adapted for rough-neuro-fuzzy classifiers. We consider the system with singleton fuzzification, Mamdani-type reasoning and center average defuzzification. Several experiments based on common benchmarks illustrating the performance of trained systems are shown. The learning and testing of the systems has been performed with various number of missing values.


missing values rough fuzzy classification back-propagation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rubin, D.B.: Interference and missing data. Biometrika 63, 581–592 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Little, R.J.A., Rubin, D.B.: Statistical analysis with missing data, 2nd edn. Wiley–Interscience (2002)Google Scholar
  3. 3.
    Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Society. Series B 39, 1–38 (1977)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Song, Q., Shepperd, M., Chen, X., Liu, J.: Can k-nn imputation improve the performance of c4.5 with small software project data sets? a comparative evaluation. The Journal of Systems & Software 81(12), 2361–2370 (2008)CrossRefGoogle Scholar
  5. 5.
    Walczak, B., Massart, D.L.: Dealing with missing data: Part i. Chemometrics and Intelligent Laboratory Systems 58(1), 15–27 (2001)CrossRefGoogle Scholar
  6. 6.
    Sartori, N., Salvan, A., Thomaseth, K.: Multiple imputation of missing values in a cancer mortality analysis with estimated exposure dose. Computational Statistics and Data Analysis 49(3), 937–953 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Nowicki, R.: Rough–neuro–fuzzy structures for classification with missing data. IEEE Trans. on Systems, Man, and Cybernetics—Part B: Cybernetics 39 (2009)Google Scholar
  8. 8.
    Dubois, D., Prade, H.: Putting rough sets and fuzzy sets together. In: Sowiski, R. (ed.) Intelligent Decision Support: Handbook of Applications and Advances of the Rough Sets Theory, pp. 203–232. Kluwer, Dordrecht (1992)Google Scholar
  9. 9.
    Nowicki, R.K.: On combining neuro–fuzzy architectures with the rough set theory to solve classification problems with incomplete data. IEEE Trans. on Knowledge and Data Engineering 20(9), 1239–1253 (2008)CrossRefGoogle Scholar
  10. 10.
    Rutkowski, L.: New Soft Computing Techniques for System Modeling, Pattern Classification and Image Processing. Springer, Heidelberg (2004)Google Scholar
  11. 11.
    Mertz, C.J., Murphy, P.M.: UCI respository of machine learning databases,
  12. 12.
    Korytkowski, M., Rutkowski, L., Scherer, R.: From Ensemble of Fuzzy Classifiers to Single Fuzzy Rule Base Classifier. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 265–272. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Scherer, R.: Boosting Ensemble of Relational Neuro-fuzzy Systems. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 306–313. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Korytkowski, M., Scherer, R., Rutkowski, L.: On combining backpropagation with boosting. In: 2006 International Joint Conference on Neural Networks, Vancouver, BC, Canada, pp. 1274–1277 (2006)Google Scholar
  15. 15.
    Scherer, R.: Neuro-fuzzy Systems with Relation Matrix. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010. LNCS, vol. 6113, pp. 210–215. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Rutkowski, L., Cpałka, K.: A general approach to neuro - fuzzy systems. In: Proceedings of the 10th IEEE International Conference on Fuzzy Systems, December 2-5, vol. 3, pp. 1428–1431 (2001)Google Scholar
  17. 17.
    Rutkowski, L., Cpałka, K.: A neuro-fuzzy controller with a compromise fuzzy reasoning. Control and Cybernetics 31(2), 297–308 (2002)zbMATHGoogle Scholar
  18. 18.
    Starczewski, J., Rutkowski, L.: Interval type 2 neuro-fuzzy systems based on interval consequents. In: Rutkowski, L., Kacprzyk, J. (eds.) Neural Networks and Soft Computing, pp. 570–577. Physica-Verlag, Springer-Verlag Company, Heidelberg, New York (2003)Google Scholar
  19. 19.
    Starczewski, J., Rutkowski, L.: Connectionist Structures of Type 2 Fuzzy Inference Systems. In: Wyrzykowski, R., Dongarra, J., Paprzycki, M., Waśniewski, J. (eds.) PPAM 2001. LNCS, vol. 2328, pp. 634–642. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Bartosz A. Nowak
    • 1
  • Robert K. Nowicki
    • 1
  1. 1.Department of Computer EngineeringCzestochowa University of TechnologyCzestochowaPoland

Personalised recommendations