Parallel Version of Image Segmentation Algorithm Using Polygonal Markov Fields

  • Rafał Kluszczyński
  • Piotr Bała
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7203)


In this paper we present an application of parallel simulated annealing method to a segmentation algorithm using polygonal Markov fields. After a brief presentation of the algorithm and a general scheme of parallelization methods using simulated annealing technique, there is presented parallel approach to the segmentation algorithm with different synchronization scenarios.

Authors also present results of the parallelization of the segmentation algorithm. There is discussed comparison between simulations with different synchronization scenarios applied to the multiple-trial approach of simulated annealing technique. Some simulations based on the number of threads are presented as well.


Image segmentation Polygonal Markov field Parallel simulated annealing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adib, A.B.: The theory behind tempered Monte Carlo methods (2005),
  2. 2.
    Arak, T.: On Markovian random fields with finite number of values. In: 4th USSR-Japan Symposium on Probability Theory and Mathematical Statistics, Abstracts of Communications, Tbilisi (1982)Google Scholar
  3. 3.
    Arak, T., Surgailis, D.: Markov fields with polygonal realisations. Probabability Theory and Related Fields, 80 (1989)Google Scholar
  4. 4.
    Bentley, J.L., Ottmann, T.A.: Algorithms for reporting and counting geometric intersections. IEEE Transactions on Computers C-28(9) (1979)Google Scholar
  5. 5.
    Chu, K.-W., Deng, Y., Reinitz, J.: Parallel Simulated Annealing by Mixing of States. Journal of Computational Physics 148 (1999)Google Scholar
  6. 6.
    Clifford, P., Middleton, R.D.: Reconstruction of polygonal images. Journal of Applied Statistics 16 (1989)Google Scholar
  7. 7.
    Clifford, P., Nicholls, G.K.: A Metropolis sampler for polygonal image reconstruction (1994)Google Scholar
  8. 8.
    Eglese, R.W.: Simulated Annealing: A tool for Operational Research. European Journal of Operational Research 46 (1994)Google Scholar
  9. 9.
    Geyer, C.J.: Markov chain Monte Carlo maximum likelihood. In: Keramidas, E.M. (ed.) Computing Science and Statistics: Proceedings of the 23rd Symposium on the Interface. Interface Foundation, Fairfax Station (1991)Google Scholar
  10. 10.
    Hukushima, K., Nemoto, K.: Exchange Monte Carlo Method and Application to Spin Glass Simulations. J.Phys. Soc. Japan 65 (1996)Google Scholar
  11. 11.
    Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by Simulated Annealing. Science, 220 (1983)Google Scholar
  12. 12.
    Kluszczyński, R., van Lieshout, M.-C., Schreiber, T.: An Algorithm for Binary Image Segmentation Using Polygonal Markov Fields. In: Roli, F., Vitulano, S. (eds.) ICIAP 2005. LNCS, vol. 3617, pp. 383–390. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Kluszczyński, R., van Lieshout, M.N.M., Schreiber, T.: Image segmentation by polygonal Markov fields. Journal Annals of the Institute of Statistical Mathematics 59(3) (2007)Google Scholar
  14. 14.
    Li, H., Tejero, R., Monleon, D., Bassolino-Klimas, D., Abate-Shen, C., Bruccoleri, R.E., Montelione, G.T.: Homology modeling using simulated annealing of restrained molecular dynamics and conformational search calculations with CONGEN: Application in predicting the three-dimensional structure of murine homeodomain Msx-1. Protein Science 6 (1997)Google Scholar
  15. 15.
    Miki, M., Hiroyasu, T., Kasai, M., Ono, K., Jitta, T.: Temperature Parallel Simulated Annealing with Adaptive Neighborhood for Continuous Optimization Problem. Computational Intelligence and Applications (2002)Google Scholar
  16. 16.
    Moglich, A., Weinfurtner, D., Maurer, T., Gronwald, W., Kalbitzer, H.R.: A restraint molecular dynamics and simulated annealing approach for protein homology modeling utilizing mean angles. BMC Bioinformatics 6, 91 (2005)CrossRefGoogle Scholar
  17. 17.
    PL-Grid project home page,
  18. 18.
    Ram, D.J., Sreenivas, T.H., Subramaniam, K.G.: Parallel Simulated Annealing Algorithms. Journal of Parallel and Distributed Computing 37 (1996)Google Scholar
  19. 19.
    Rosenfeld, A., Kak, A.C.: Digital picture processing, 2nd edn., vol. 2. Academic Press, Orlando (1982)Google Scholar
  20. 20.
    Schreiber, T.: Mixing properties of polygonal Markov fields in the plane (2003),
  21. 21.
    Schreiber, T.: Random dynamics and thermodynamic limits for polygonal Markov fields in the plane. Advances in Applied Probability 37(4) (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Rafał Kluszczyński
    • 1
  • Piotr Bała
    • 1
    • 2
  1. 1.Interdisciplinary Centre for Mathematical and Computational ModellingUniversity of WarsawWarsawPoland
  2. 2.Department of Mathematics and Computer ScienceNicolaus Copernicus UniversityToruńPoland

Personalised recommendations