Advertisement

TFETI Coarse Space Projectors Parallelization Strategies

  • Vaclav Hapla
  • David Horak
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7203)

Abstract

This paper deals with an analysis of various parallelization strategies for the TFETI algorithm. The data distributions and the most relevant actions are discussed, especially those concerning coarse problem. Being a part of the coarse space projector, it couples all the subdomains computations and accelerates convergence. Its direct solution is more robust but complicates the massively parallel implementation. Presented numerical results confirm high parallel scalability of the coarse problem solution if the dual constraint matrix is distributed and then orthonormalized in parallel. Benchmarks were implemented using PETSc parallelization library and run on HECToR service at EPCC in Edinburgh.

Keywords

domain decomposition FETI Total FETI TFETI PETSc natural coarse space coarse problem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dostal, Z., Horak, D., Kucera, R.: Total FETI – an easier implementable variant of the FETI method for numerical solution of elliptic PDE. Commun. in Numerical Methods in Engineering 22, 1155–1162 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Dostal, Z., Horak, D.: Theoretically supported scalable FETI for numerical solution of variational inequalities. SIAM Journal on Num. Anal. 45, 500–513 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Balay, S., Gropp, W., McInnes, L.C., Smith, B.: PETSc 3.0.0 Users Manual, Argonne National Laboratory, http://www.mcs.anl.gov/petsc/
  4. 4.
    Lingen, F.J.: Efficient Gram-Schmidt orthonormalization on parallel computers. Research report, Department of Aerospace Engineering, Delft University of Technology (1999)Google Scholar
  5. 5.
    Farhat, C., Roux, F.-X.: An unconventional domain decomposition method for an efficient parallel solution of large-scale finite element systems. SIAM Journal on Scientific Computing 13, 379–396 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Farhat, C., Mandel, J., Roux, F.-X.: Optimal convergence properties of the FETI domain decomposition method. Comput. Methods Appl. Mech. Eng. 115, 365–385 (1994)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Roux, F.-X., Farhat, C.: Parallel implementation of direct solution strategies for the coarse grid solvers in 2-level FETI method. Contemporary Math. 218, 158–173 (1998)MathSciNetCrossRefGoogle Scholar
  8. 8.
    HECToR Home Page, http://www.hector.ac.uk/
  9. 9.
    Vondrak, V., Kozubek, T., Markopoulos, A., Dostal, Z.: Parallel solution of contact shape optimization problems based on Total FETI domain decomposition method. Structural and Multidisciplinary Optimization 42(6), 955–964 (2010)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Kozubek, T., Dostal, Z., Vondrak, V., Markopoulos, A., Brzobohaty, T.: Scalable TFETI algorithm for the solution of multibody contact problems of elasticity. International Journal for Numerical Methods in Engineering 82(11), 1384–1405 (2010)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Vaclav Hapla
    • 1
  • David Horak
    • 1
  1. 1.Department of Applied MathematicsVSB-Technical University of OstravaOstrava-PorubaCzech Republic

Personalised recommendations