Advertisement

A Multi-faceted User Model for Twitter

  • John Hannon
  • Kevin McCarthy
  • Michael P. O’Mahony
  • Barry Smyth
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7379)

Abstract

In this paper we describe an initial attempt to build multi-faceted user models from raw Twitter data. The key contribution is to describe a technique for categorising users and their social ties according to a collection of curated topical categories and in this way resolve much of the preference noise that is inherent within user conversations. We go on to analyse and evaluate this approach on a data set of over 240,000 Twitter users and discuss the applications of these novel user models.

Keywords

Twitter Lists User Model Tags 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abel, F., Gao, Q., Houben, G.-J., Tao, K.: Analyzing User Modeling on Twitter for Personalized News Recommendations. In: Konstan, J.A., Conejo, R., Marzo, J.L., Oliver, N. (eds.) UMAP 2011. LNCS, vol. 6787, pp. 1–12. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Carmagnola, F., Cena, F., Cortassa, O., Gena, C., Torre, I.: Towards a Tag-Based User Model: How Can User Model Benefit from Tags? In: Conati, C., McCoy, K., Paliouras, G. (eds.) UM 2007. LNCS (LNAI), vol. 4511, pp. 445–449. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Dunn, A.: The arab spring: Revolution and shifting geopolitics - unplugging a nation. In: LexisNexis, International And Foreign Law. LexisNexis (2011)Google Scholar
  4. 4.
    Hannon, J., Bennett, M., Smyth, B.: Recommending twitter users to follow using content and collaborative filtering approaches. In: Proceedings of the Fourth ACM Conference on Recommender Systems, RecSys 2010, pp. 199–206. ACM (2010)Google Scholar
  5. 5.
    Kim, D., Jo, Y., Moon, I.-C., Oh, A.: Analysis of twitter lists as a potential source for discovering latent characteristics of users. In: Workshop on Microblogging at the ACM Conference on Human Factors in Computer Systems, CHI 2010 (2010)Google Scholar
  6. 6.
    Phelan, O., McCarthy, K., Bennett, M., Smyth, B.: Terms of a Feather: Content-Based News Recommendation and Discovery Using Twitter. In: Clough, P., Foley, C., Gurrin, C., Jones, G.J.F., Kraaij, W., Lee, H., Mudoch, V. (eds.) ECIR 2011. LNCS, vol. 6611, pp. 448–459. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Stoyanovich, J., Amer-Yahia, S., Marlow, C., Yu, C.: Leveraging tagging to model user interests in delicious. In: AAAI 2008: Proceedings of the 2008 AAAI Social Information Spring Symposium (2008)Google Scholar
  8. 8.
    Yang, L., Moshtaghi, M., Han, B., Karunasekera, S., Kotagiri, R., Baldwin, T., Harwood, A.: Mining micro-blogs: Opportunities and challenges. In: Social Networks: Computational Aspects and Mining. Springer, TBAGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • John Hannon
    • 1
  • Kevin McCarthy
    • 1
  • Michael P. O’Mahony
    • 1
  • Barry Smyth
    • 1
  1. 1.CLARITY: Centre for Sensor Web Technologies, School of Computer Science & InformaticsUniversity College DublinIreland

Personalised recommendations