Improved Known-Key Distinguishers on Feistel-SP Ciphers and Application to Camellia

  • Yu Sasaki
  • Sareh Emami
  • Deukjo Hong
  • Ashish Kumar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7372)

Abstract

This paper revisits previous known-key distinguishers on generic Feistel-SP ciphers based on rebound attacks. In this paper first we propose a new 5-round inbound phase that requires 2c computations, while the previous work requires 22c computations (c is a size of the S-box). The new method also improves the number of rounds which can be attacked. Then, we apply the new procedure to Camellia. After several optimizations for Camellia, it is shown that collisions are efficiently generated against 9 rounds out of 18 rounds of Camellia-128 including FL and whitening layers in the compression function modes such as MMO and Miyaguchi-Preneel modes. The attack on Camellia is verified by a machine experiment and the generated results are presented in the paper.

Keywords

block cipher Feistel-SP Camellia known-key rebound 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Knudsen, L.R., Rijmen, V.: Known-Key Distinguishers for Some Block Ciphers. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 315–324. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Sasaki, Y., Yasuda, K.: Known-Key Distinguishers on 11-Round Feistel and Collision Attacks on Its Hashing Modes. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 397–415. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: The Rebound Attack: Cryptanalysis of Reduced Whirlpool and Grøstl. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 260–276. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Mendel, F., Peyrin, T., Rechberger, C., Schläffer, M.: Improved Cryptanalysis of the Reduced Grøstl Compression Function, ECHO Permutation and AES Block Cipher. In: Jacobson Jr., M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 16–35. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Minier, M., Phan, R.C.-W., Pousse, B.: Distinguishers for Ciphers and Known Key Attack against Rijndael with Large Blocks. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 60–76. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Sasaki, Y.: Known-Key Attacks on Rijndael with Large Blocks and Strengthening ShiftRow Parameter. In: Echizen, I., Kunihiro, N., Sasaki, R. (eds.) IWSEC 2010. LNCS, vol. 6434, pp. 301–315. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Biryukov, A., Nikolić, I.: A new security analysis of AES-128. Rump session of CRYPTO 2009 (2009), http://rump2009.cr.yp.to/
  8. 8.
    Biryukov, A., Nikolić, I.: Automatic Search for Related-Key Differential Characteristics in Byte-Oriented Block Ciphers: Application to AES, Camellia, Khazad and Others. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 322–344. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Nikolić, I., Pieprzyk, J., Sokołowski, P., Steinfeld, R.: Known and Chosen Key Differential Distinguishers for Block Ciphers. In: Rhee, K.-H., Nyang, D. (eds.) ICISC 2010. LNCS, vol. 6829, pp. 29–48. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J., Tokita, T.: Camellia: A 128-Bit Block Cipher Suitable for Multiple Platforms - Design and Analysis. In: Stinson, D.R., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012, pp. 39–56. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    Lu, J., Wei, Y., Kim, J., Fouque, P.A.: Cryptanalysis of reduced versions of the Camellia block cipher. In: Selected Areas in Cryptography 2011 (2011), http://sac2011.ryerson.ca/SAC2011/LWKF.pdf
  12. 12.
    Li, L., Chen, J., Jia, K.: New Impossible Differential Cryptanalysis of Reduced-Round Camellia. In: Lin, D., Tsudik, G., Wang, X. (eds.) CANS 2011. LNCS, vol. 7092, pp. 26–39. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Liu, Y., Li, L., Gu, D., Wang, X., Liu, Z., Chen, J., Li, W.: New observations on impossible differential cryptanalysis of reduced-round Camellia. In: Fast Software Encryption 2012. Springer (to appear, 2012)Google Scholar
  14. 14.
    Bai, D., Li, L.: New Impossible Differential Attacks on Camellia. In: Ryan, M.D., Smyth, B., Wang, G. (eds.) ISPEC 2012. LNCS, vol. 7232, pp. 80–96. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  15. 15.
    Daemen, J., Rijmen, V.: AES Proposal: Rijndael (1998)Google Scholar
  16. 16.
    U.S. Department of Commerce, National Institute of Standards and Technology: Specification for the ADVANCED ENCRYPTION STANDARD (AES) (Federal Information Processing Standards Publication 197) (2001)Google Scholar
  17. 17.
    Rijmen, V., Barreto, P.S.L.M.: The WHIRLPOOL hashing function. Submitted to NISSIE (2000)Google Scholar
  18. 18.
    Lamberger, M., Mendel, F., Rechberger, C., Rijmen, V., Schläffer, M.: Rebound Distinguishers: Results on the Full Whirlpool Compression Function. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 126–143. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  19. 19.
    Preneel, B., Govaerts, R., Vandewalle, J.: Hash Functions Based on Block Ciphers: A Synthetic Approach. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 368–378. Springer, Heidelberg (1994)Google Scholar
  20. 20.
    Black, J.A., Rogaway, P., Shrimpton, T.: Black-Box Analysis of the Block-Cipher-Based Hash-Function Constructions from PGV. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 320–335. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  21. 21.
    Leurent, G., Nguyen, P.Q.: How Risky Is the Random-Oracle Model? In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 445–464. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  22. 22.
    Wagner, D.: A Generalized Birthday Problem. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 288–303. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  23. 23.
    International Organization for Standardization: ISO/IEC 18033-3, Information technology – Security techniques – Encryption algorithms – Part 3: Block ciphers (2005)Google Scholar
  24. 24.
    NESSIE-New European Schemes for Signatures, Integrity, and Encryption: Final report of European project IST-1999-12324 (1999), https://www.cosic.esat.kuleuven.be/nessie/Bookv015.pdf
  25. 25.
    CRYPTREC-C-Cryptography Research and Evaluation Committees: e-Government recommended ciphers list (2003), http://www.cryptrec.go.jp/english/index.html

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Yu Sasaki
    • 1
  • Sareh Emami
    • 2
  • Deukjo Hong
    • 3
  • Ashish Kumar
    • 4
  1. 1.NTT CorporationJapan
  2. 2.Macquarie UniversityAustralia
  3. 3.The Attached Institute of ETRIKorea
  4. 4.Indian Institute of Technology KharagpurIndia

Personalised recommendations