A Game-Theoretic Perspective on Oblivious Transfer

  • Haruna Higo
  • Keisuke Tanaka
  • Akihiro Yamada
  • Kenji Yasunaga
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7372)


Asharov, Canetti, and Hazay (Eurocrypt 2011) studied how game-theoretic concepts can be used to capture the cryptographic properties of correctness, privacy, and fairness in two-party protocols in the presence of fail-stop adversaries. Based on their work, we characterize the properties of “two-message” oblivious transfer protocols by using a game-theoretic concept. Specifically, we present a single two-player game for two-message oblivious transfer in the game-theoretic framework, where it captures the cryptographic properties of correctness and privacy in the presence of malicious adversaries.


cryptography game theory oblivious transfer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abraham, I., Dolev, D., Gonen, R., Halpern, J.Y.: Distributed Computing Meets Game Theory: Robust Mechanisms for Rational Secret Sharing and Multiparty Computation. In: Ruppert, E., Malkhi, D. (eds.) PODC, pp. 53–62. ACM (2006)Google Scholar
  2. 2.
    Asharov, G., Canetti, R., Hazay, C.: Towards a Game Theoretic View of Secure Computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 426–445. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Asharov, G., Lindell, Y.: Utility Dependence in Correct and Fair Rational Secret Sharing. J. Cryptology 24(1), 157–202 (2011)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Ding, Y.Z., Harnik, D., Rosen, A., Shaltiel, R., Shaltiel, R.: Constant-Round Oblivious Transfer in the Bounded Storage Model. J. Cryptology, 165–202 (2007)Google Scholar
  5. 5.
    Dodis, Y., Rabin, T.: Cryptography and Game Theory. In: Nisan, N., Roughgarden, T., Tardos, É., Vazirani, V.V. (eds.) Algorithmic Game Theory, ch. 8, pp. 181–205. Cambridge University Press (2007)Google Scholar
  6. 6.
    Fuchsbauer, G., Katz, J., Naccache, D.: Efficient Rational Secret Sharing in Standard Communication Networks. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 419–436. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Gordon, S.D., Katz, J.: Rational Secret Sharing, Revisited. In: De Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 229–241. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Halevi, S., Kalai, Y.T.: Smooth Projective Hashing and Two-Message Oblivious Transfer. J. Cryptology 25(1), 158–193 (2012)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Halpern, J.Y., Pass, R., Pass, R.: Game Theory with Costly Computation: Formulation and Application to Protocol Security. In: ICS, pp. 120–142 (2010)Google Scholar
  10. 10.
    Halpern, J.Y., Teague, V.: Rational Secret Sharing and Multiparty Computation: Extended Abstract. In: Babai, L. (ed.) STOC, pp. 623–632. ACM (2004)Google Scholar
  11. 11.
    Hazay, C., Lindell, Y.: Efficient Secure Two-Party Protocols: Techniques and Constructions. Information Security and Cryptography Series. Springer, Heidelberg (2010)MATHCrossRefGoogle Scholar
  12. 12.
    Kol, G., Naor, M.: Cryptography and Game Theory: Designing Protocols for Exchanging Information. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 320–339. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Kol, G., Naor, M.: Games for Exchanging Information. In: Dwork, C. (ed.) STOC, pp. 423–432. ACM (2008)Google Scholar
  14. 14.
    Lysyanskaya, A., Triandopoulos, N.: Rationality and Adversarial Behavior in Multi-party Computation. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 180–197. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Micali, S., Shelat, A.: Purely Rational Secret Sharing (Extended Abstract). In: Reingold [17], pp. 54–71Google Scholar
  16. 16.
    Ong, S.J., Parkes, D.C., Rosen, A., Vadhan, S.P.: Fairness with an Honest Minority and a Rational Majority. In: Reingold [17], pp. 36–53Google Scholar
  17. 17.
    Reingold, O. (ed.): TCC 2009. LNCS, vol. 5444. Springer, Heidelberg (2009)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Haruna Higo
    • 1
  • Keisuke Tanaka
    • 1
  • Akihiro Yamada
    • 1
  • Kenji Yasunaga
    • 2
  1. 1.Tokyo Institute of TechnologyJapan
  2. 2.Institute of SystemsInformation Technologies and NanotechnologiesJapan

Personalised recommendations