Seismometric Monitoring of Hypogeous Failures Due to Slope Deformations

  • Luca Lenti
  • Salvatore MartinoEmail author
  • Antonella Paciello
  • Alberto Prestininzi
  • Stefano Rivellino


Results from a seismometric monitoring of rock mass failures affecting a karstified slope are here presented. The slope, located in Central Apennines (Italy), hosts a drainage plant and is involved in gravity-induced deformations.

Starting from September 4, 2008 four accelerometric stations were installed within the tunnels of the drainage plant.

More than 1,000 events, referred to both earthquakes and hypogeous rock mass failures, were recorded.

The frequencies of occurrence of earthquakes and rock mass failures result to be generally well correlated; nevertheless, many hypogeous instabilities can be directly associated to the continuous slope deformations.

The trend of the cumulative Arias intensity derived for the hypogeous instabilities shows a time variable rate which was used as a tool for monitoring the deformational process of the slope as well as for managing the associated geological risk by the use of alert or alarm plans.


Seismometric monitoring Rock mass spreading Hypogeous failures 



Authors wish to thank ACEA-ATO2 S.p.A. for the provided data; Ing. G. Martino for the authorisation to data publishing; Dott. C. Romagnoli for the revision of the data and for the useful technical discussions.


  1. Boni CF, Capelli G, Petitta M (1995) Carta idrogeologica dell‘alta e media Valle del F. Velino. Elaborazione cartografica e stampa System Cart, RomeGoogle Scholar
  2. Casini S, Martino S, Petitta M, Prestininzi A (2006) A physical analogue model to analyse interactions between tensile stresses and dissolution in carbonate slopes. Hydrogeol J 14:1387–1402CrossRefGoogle Scholar
  3. Chigira M (1992) Long-term gravitational deformation of rocks by mass rock creep. Eng Geol 32:157–184CrossRefGoogle Scholar
  4. Ciotoli G, Di Filippo M, Nisio S, Romagnoli C (2001) La Piana di S. Vittorino: dati preliminari sugli studi geologici, strutturali, geomorfologici, geofisici e geochimici. Mem Soc Geol It 56:297–308Google Scholar
  5. Deparis J, Jongmans J, Cotton F, Bailler L, Thouvenot F, Hantz D (2008) Analysis of rock-fall and rock-fall avalanche seismograms in the French Alps. Bull Seism Soc Am 98(2):1781–1796CrossRefGoogle Scholar
  6. Ganne P, Vervoort A, Wevers M (2007) Quantification of pre-peak brittle damage: correlation between acoustic emission and observed micro-fracturing. Int J Rock Mech Min Sci 44:720–729CrossRefGoogle Scholar
  7. Heng IS (2009) Rotating stellar core-collapse waveform decomposition: a principal component analysis approach. Class Quantum Grav 26:105005CrossRefGoogle Scholar
  8. Lai XP, Cai MF, Xie MW (2006) In situ monitoring and analysis of rock mass behavior prior to collapse of the main transport roadway in Linglong Gold Mine, China. Int J Rock Mech Min Sci 43:640–646CrossRefGoogle Scholar
  9. Lei X, Masuda K, Nishizawa O, Jouniaux L, Liu L, Ma W, Satoh T, Kusunose K (2004) Detailed analysis of acoustic emission activity during catastrophic fracture of faults in rock. J Struct Geol 26:247–258CrossRefGoogle Scholar
  10. Lenti L, Martino S, Paciello A, Prestininzi A, Romeo R (2011) Insights into the ground motion records of the Honshu (Japan) earthquake of 11 March 2011. Ital J Eng Geol Environ 1:5–16Google Scholar
  11. Lenti L, Martino S, Paciello A, Prestininzi A, Rivellino S (2012) Microseismicity within a karstified rock mass due to cracks and collapses as a tool for risk management. Natural Hazards 64:359–379CrossRefGoogle Scholar
  12. Maffei A, Martino S, Prestininzi A (2005) From the geological to the numerical model in the analysis of the gravity-induced slope deformations: an example from the Central Apennines (Italy). Eng Geol 78:215–236CrossRefGoogle Scholar
  13. Martino S, Prestininzi A, Scarascia Mugnozza G (2004) Geological evolutionary model of a gravity-induced slope deformation in the carbonate central Apennines (Italy). Quart J Eng Geol Hydrogeol 37(1):31–47CrossRefGoogle Scholar
  14. Miller A, Richards JA, McCann DM, Browitt CWA, Jackson PD (1989) Microseismic techniques for monitoring incipient hazardous collapse conditions above abandoned limestone mines. Quart J Eng Geol London 22:1–18CrossRefGoogle Scholar
  15. Phillips WS, Pearson DC, Edwards CL, Stump BW (1997) Microseismicity induced by a controlled, mine collapse at white pine, Michigan. Int J Rock Mech Min Sci 34(314):246Google Scholar
  16. Szwedzicki T (2001) Geotechnical precursors to large-scale ground collapse in mines. Int J Rock Mech Min Sci 38:957–965CrossRefGoogle Scholar
  17. Szwedzicki T (2003) Rock mass behaviour prior to failure. Int J Rock Mech Min Sci 40:573–584Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Luca Lenti
    • 1
  • Salvatore Martino
    • 2
    • 3
    Email author
  • Antonella Paciello
    • 4
  • Alberto Prestininzi
    • 2
    • 3
  • Stefano Rivellino
    • 2
  1. 1.Institut Français des Sciences et Technologies des Transports, de l’Aménagement et des Réseaux (IFSTTAR-Paris) – 14-20 Boulevard Newton Cité DescartesMarne la Vallée Cedex 2France
  2. 2.CE.RI., Research Centre on Prevention, Prediction of Control of Geological Risks“Sapienza” Università di RomaValmontone (RM)Italy
  3. 3.Department of Earth Sciences“Sapienza” Università di RomaRomeItaly
  4. 4.Agenzia Nazionale per le Nuove Tecnologiel‘Energia e lo Sviluppo Economico Sostenibile ENEA – C.R. CasacciaS. Maria di Galeria RomeItaly

Personalised recommendations