Polyploidization and Sex Chromosome Evolution in Amphibians

  • Ben J. Evans
  • R. Alexander Pyron
  • John J. Wiens

Abstract

Genome duplication, including polyploid speciation and spontaneous polyploidy in diploid species, occurs more frequently in amphibians than mammals. One possible explanation is that some amphibians, unlike almost all mammals, have young sex chromosomes that carry a similar suite of genes (apart from the genetic trigger for sex determination). These species potentially can experience genome duplication without disrupting dosage stoichiometry between interacting proteins encoded by genes on the sex chromosomes and autosomal chromosomes. To explore this possibility, we performed a permutation aimed at testing whether amphibian species that experienced polyploid speciation or spontaneous polyploidy have younger sex chromosomes than other amphibians. While the most conservative permutation was not significant, the frog genera Xenopus and Leiopelma provide anecdotal support for a negative correlation between the age of sex chromosomes and a species’ propensity to undergo genome duplication. This study also points to more frequent turnover of sex chromosomes than previously proposed, and suggests a lack of statistical support for male versus female heterogamy in the most recent common ancestors of frogs, salamanders, and amphibians in general. Future advances in genomics undoubtedly will further illuminate the relationship between amphibian sex chromosome degeneration and genome duplication.

Keywords

Dosage Compensation Recent Common Ancestor Polyploid Species Most Recent Common Ancestor Ancestral Reconstruction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We are particularly grateful to Barbara Mable who provided a comprehensive critical assessment of an earlier version of this chapter. We also thank Liam Revell for advice and assistance with the R package “phytools” and Jim Bogart and Ben Bolker for comments.

References

  1. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Contr 19:716–723CrossRefGoogle Scholar
  2. Arnold AP, Itoh Y, Melamed E (2008) A bird’s-eye view of sex chromosome dosage compensation. Annu Rev Genomics Hum Genet 9:109–127PubMedCrossRefGoogle Scholar
  3. Baéz AM (2000) Tertiary anurans from South America. In: Heatwole H, Carroll RL (eds) Amphibian biology. Surrey Beatty, Chipping Norton, Australia, pp 1388–1401Google Scholar
  4. Beçak ML, Beçak W (1998) Evolution by polyploidy in amphibia: new insights. Cytogenet Cell Genet 80:28–33PubMedCrossRefGoogle Scholar
  5. Bergero R, Charlesworth D (2009) The evolution of restricted recombination in sex chromosomes. Trends Ecol Evol 24:94–102PubMedCrossRefGoogle Scholar
  6. Bergero R, Charlesworth D (2011) Preservation of the Y transcriptome in a 10 million-year-old plant sex chromosome system. Curr Biol 21:1470–1474PubMedCrossRefGoogle Scholar
  7. Bewick AJ, Anderson DW, Evans BJ (2011) Evolution of the closely related, sex-related genes DM-W and DMRT1 in African clawed frogs (Xenopus). Evolution 65:698–712PubMedCrossRefGoogle Scholar
  8. Blackburn DC and Beier M (2011) "Xenopus paratropicalis" is not a valid name. Zootaxa 3035:57–58Google Scholar
  9. Briggs R (1947) The experimental production and development of triploid frog embryos. J Exp Zool 106:237–266PubMedCrossRefGoogle Scholar
  10. Bogart JP (1980) Evolutionary significance of polyploidy in amphibians and reptiles. In: Lewis WH (ed) Polyploidy, biological relavance. Basic life sciences, New York, pp 341–378Google Scholar
  11. Carroll RL (1988) Vertebrate paleontology and evolution W. H. Freeman and Company, New YorkGoogle Scholar
  12. Charlesworth B, Charlesworth D (2000) The degeneration of Y chromosomes. Philos Trans R Soc London B 355:1563–1572CrossRefGoogle Scholar
  13. Charlesworth D (2002) Plant sex determination and sex chromosomes. Heredity 88:94–101PubMedCrossRefGoogle Scholar
  14. Charlesworth D, Charlesworth B, Mariais G (2005) Steps in the evolution of heteromorphic sex chromosomes. Heredity 95:118–128PubMedCrossRefGoogle Scholar
  15. Duellman WE, Trueb L (1994) Biology of amphibians. The Johns Hopkins University Press, BaltimoreGoogle Scholar
  16. Eggert C (2005) Sex determination: the amphibian models. Reprod Nutr Dev 44:539–549CrossRefGoogle Scholar
  17. Evans BJ (2007) Ancestry influences the fate of duplicated genes millions of years after duplication in allopolyploid clawed frogs (Xenopus). Genetics 176:1119–1130PubMedCrossRefGoogle Scholar
  18. Evans BJ (2008) Genome evolution and speciation genetics of allopolyploid clawed frogs (Xenopus and Silurana). Front Biosci 13:4687–4706PubMedCrossRefGoogle Scholar
  19. Evans BJ, Cannatella DC, Melnick DJ (2004a) Understanding the origins of areas of endemism in phylogeographic analyses: a reply to Bridle et al. Evolution 58:1397–1400Google Scholar
  20. Evans BJ, Kelley DB, Tinsley RC, Melnick DJ, Cannatella DC (2004b) A mitochondrial DNA phylogeny of clawed frogs: phylogeography on sub-Saharan Africa and implications for polyploid evolution. Mol Phylogenet Evol 33:197–213PubMedCrossRefGoogle Scholar
  21. Evans BJ, Carter TF, Hanner R et al (2008a) A new species of clawed frog (genus Xenopus), from the Itombwe Plateau, Democratic Republic of the Congo: implications for DNA barcodes and biodiversity conservation. Zootaxa 1780:55–68Google Scholar
  22. Evans BJ, Greenbaum E, Kusamba C et al (2011) Description of a new octoploid frog species (Anura: Pipidae: Xenopus) from the Democratic Republic of the Congo, with a discussion of the biogeography of African clawed frogs in the Albertine Rift. J Zool London 283:276–290CrossRefGoogle Scholar
  23. Evans BJ, Kelley DB, Melnick DJ, Cannatella DC (2005a) Evolution of RAG-1 in polyploid clawed frogs. Mol Biol Evol 22:1193–1207PubMedCrossRefGoogle Scholar
  24. Evans SE, Jones MEH, Krause DW (2008b) A giant frog with South American affinities from the Late Cretaceous of Madagascar. Proc Nat Acad Sci 105:2951–2956PubMedCrossRefGoogle Scholar
  25. Evans SE, Lally C, Chure DC, Elder A, Maisano JA (2005b) A new fully metamorphosed salamander from the Late Jurassic of North America. Zool J Linn Soc 143Google Scholar
  26. Evans SE, Milner AR (1996) A metamorphosed salamander from the early Cretaceous of Las Hoyas, Spain. Philos Trans R Soc London B 351:627–646CrossRefGoogle Scholar
  27. Ezaz T, Stiglec R, Veyrunes F, Graves JAM (2006) Relationships between vertebrate ZW and XY sex chromosome systems. Curr Biol 16:R736–R743PubMedCrossRefGoogle Scholar
  28. Felsenstein J (1974) The evolutionary advantage of recombination. Genetics 78:737–756PubMedGoogle Scholar
  29. Fankhauser G, Crotta R, Perrot M (1942) Spontaneous and cold-induced triploidy in the Japanese newt Triturus pyrrhogaster. J Exp Zool 89:167–181CrossRefGoogle Scholar
  30. Fankhauser G (1941) The frequency of polyploidy and other spontaneous aberrations of chromosome number among larvae of the newt Triturus viridescens. Proc Nat Acad Sci 27:507–512PubMedCrossRefGoogle Scholar
  31. Fankhauser G, Watson RC (1942) Heat-indiced triploidy in the newt, Triturus viridescens. Proc Nat Acad Sci 28:436–440PubMedCrossRefGoogle Scholar
  32. Gardner JD (2003) The fossil salamander Proamphiuma cretacea Estes (Caudata: Amphiumidae) and relationships within the Amphiumidae. J Vertebr Paleontol 23:769–782CrossRefGoogle Scholar
  33. Graves JAM (2004) The degenerate Y chromosome—can conversion save it? Reprod Fertil Dev 16:527–534PubMedCrossRefGoogle Scholar
  34. Graves JAM (2008) Weird animal genomes and the evolution of vertebrate sex and sex chromosomes. Annu Rev Genet 42:565–586CrossRefGoogle Scholar
  35. Green DM (1988) Cytogenetics of the endemic New Zealand frog, Leiopelma hochstetteri: extraordinary supernumerary chromosome variation and a unique sex-chromosome system. Chromosoma 97:55–70CrossRefGoogle Scholar
  36. Green DM, Kezer J, Nussbaum RA (1984) Triploidy in Hochstetter’s frog, Leiopelma hochstetteri, from New Zealand. New Zealand J Zool 11:457–460CrossRefGoogle Scholar
  37. Green DM, Zeyl CW, Sharbel TF (1993) The evolution of hypervariable sex and supernumerary (B) chromosomes in the relict New Zealand frog, Leiopelma hochstetteri. J Evol Biol 6:417–441CrossRefGoogle Scholar
  38. Gregory TR, Mable BK (2005) Polyploidy in animals. In: Gregory TR (ed) The Evolution of the Genome. Elsevier Academic Press, Burlington, pp 428–517Google Scholar
  39. Hayes TB (1998) Sex determination and primary sex differentiation in amphibians: genetic and developmental mechanisms. J Exp Zool 281:373–399PubMedCrossRefGoogle Scholar
  40. Hillis DM, Green DM (1990) Evolutionary changes of heterogametic sex in the phylogenetic history of amphibians. J Evol Biol 3:49–64CrossRefGoogle Scholar
  41. Holloway AK, Cannatella DC, Gerhardt HC, Hillis DM (2006) Polyploids with different origins and ancestors form a single sexual polyploid species. Am Nat 167:E88–E101PubMedCrossRefGoogle Scholar
  42. Holman JA (2003) Fossil frogs and toads of North America Indiana University Press. Bloomington and Indianapolis, INGoogle Scholar
  43. Kashiwagi K (1993) Production of triploids and their reproductive capacity in Rana rugosa. Sci Rep Lab Amphibian Biol Hiroshima Univ 12:23–36Google Scholar
  44. Kawamura T, Tokunaga C (1952) The sex of triploid frogs, Rana japonica Günther. J Sci Hiroshima Univ, Ser B, Div 1 (Zoology) 13Google Scholar
  45. Humphrey RR (1963) Polyploidy in the Mexican axolotl (Ambystoma mexicanum) resulting from multinucleate ova. Proc Nat Acad Sci 50:1122–1127PubMedCrossRefGoogle Scholar
  46. Kobel HR, Loumont C, Tinsley RC (1996) The extant species. In: Tinsley RC, Kobel HR (eds) The Biology of Xenopus. Clarendon Press, Oxford, pp 9–33Google Scholar
  47. Kawamura T (1984) Polyploidy in amphibians. Zool Sci 1:1–15Google Scholar
  48. Kobel HR (1996) Allopolyploid speciation. In: Tinsley RC, Kobel HR (eds) The Biology of Xenopus. Clarendon Press, Oxford, pp 391–401Google Scholar
  49. Kobel HR, Du Pasquier L (1986) Genetics of polyploid Xenopus. Trends Genet 2:310–315CrossRefGoogle Scholar
  50. Litvinchuk SN, Rosanov JM, Borkin LJ (1998) A case of natural triploidy in a smooth newt Triturus vulgaris (Linneaus, 1958), from Russia (Caudata: Salamandridae). Herpetozoa 11:93–95Google Scholar
  51. Mable BK (2004) ‘Why polyploidy is rarer in animals than in plants’: myths and mechanisms. Biol J Linn Soc 82:453–466CrossRefGoogle Scholar
  52. Mable BK, Alexandrou MA, Taylor MI (2011) Genome duplication in amphibians and fish: an extended synthesis. J Zool 284:151–182CrossRefGoogle Scholar
  53. Mable BK, Roberts JD (1997) Mitochondrial DNA evolution in the genus Neobatrachus (Anura: Myobatrachidae). Copeia 1997:680–689CrossRefGoogle Scholar
  54. Mayrose I, Zhan SH, Rothfels CJ et al (2011) Recently formed polyploid plants diversify at lower rates. Science 333:1257PubMedCrossRefGoogle Scholar
  55. Milner AR (2000) Mesozoic and Tertiary Caudata and Albanerpetontidae. In: Heatwole H, Carrol RL (eds) Amphibian Biology. Surrey Beatty, Chipping Norton, Australia, pp 31–108Google Scholar
  56. Morescalchi A, Olmo E (1974) Sirenids: a family of polyploid urodeles? Experientia 30:491–492PubMedCrossRefGoogle Scholar
  57. Moler PE, Kezer J (1993) Karyology and systematics of the salamander genus Pseudobranchus (Sirenidae). Copeia 1993:39–47CrossRefGoogle Scholar
  58. Muller HJ (1925) Why polyploidy is rarer in animals in plants. Am Nat 59:346–353CrossRefGoogle Scholar
  59. Muller HJ (1964) The relation of recombination to mutational advance. Mutat Res 106:2–9PubMedGoogle Scholar
  60. Naylor BG, Fox RC (1993) A new ambystomatid salamander Dicamptodon antiquus n. sp. from the Paleocene of Alberta. Can J Earth Sci 30:814–818CrossRefGoogle Scholar
  61. Nielsen R (2002) Mapping mutations on phylogenies. Syst Biol 51:729–739PubMedCrossRefGoogle Scholar
  62. Ogata M, Hasegawa Y, Ohtani H, Mineyama M, Miura I (2008) The ZZ/ZW sex-determining mechanism originated twice and independently during evolution of the frog, Rana rugosa. Heredity 100:92–99PubMedCrossRefGoogle Scholar
  63. Ohno S (1967) Sex chromosomes and sex-linked genes. Springer, BerlinCrossRefGoogle Scholar
  64. Orr HA (1990) ‘Why polyploidy is rarer in animals than in plants’ revisited. Am Nat 136:759–770CrossRefGoogle Scholar
  65. Otto SP, Whitton J (2000) Polyploid incidence and evolution. Annu Rev Genet 34:401–437PubMedCrossRefGoogle Scholar
  66. Papp B, Pál C, Hurst LD (2003) Dosage sensitivity and the evolution of gene families in yeast. Nature 424:194–197PubMedCrossRefGoogle Scholar
  67. Paradis E, Claude J, Strimmer K (2004) APE: analysis of phylogenetics and evolution in R language. Bioinf 20:289–290CrossRefGoogle Scholar
  68. Poinar GO, Cannatella DC (1987) An upper Eocene frog from the Dominican Republic and its implication for Caribbean biogeography. Science 237:1215–1216PubMedCrossRefGoogle Scholar
  69. Pyron RA, Wiens JJ (2011) A large-scale phylogeny of Amphibia including over 2800 species, and a revised classification of extant frogs, salamanders, and caecilians. Mol Phylogenet Evol 61:543–583PubMedCrossRefGoogle Scholar
  70. Qian W, Zhang J (2008) Gene dosage and gene duplicability. Genetics 179:2319–2324PubMedCrossRefGoogle Scholar
  71. Rage JC, Rocek Z (1989) Redescription of Triadobatrachus massinoti (Piveteau, 1936) an anuran amphibian from the early Triassic. Palaeontographica Paleontologica 206:1–16Google Scholar
  72. Revell JJ (2011) Phytools: phylogenetic tools for comparative biology (and other things). (R Package)Google Scholar
  73. Rocek Z (2000) Mesozoic anurans. In: Heatwole H, Carrol RL (eds) Amphibian biology. Surrey Beatty, Chipping Norton, Australia, pp 1295–1331Google Scholar
  74. Rocek Z, Rage J-C (2000) Tertiary Anura of Europe, Africa, Asia, North America, and Australia. In: Heatwole H, Carrol RL (eds) Amphibian Biology. Surrey Beatty, Chipping Norton, Australia, pp 1332–1387Google Scholar
  75. Sanchiz FB (1998) Salienta. In: Wellnhofer P (ed) Encyclopedia of paleoherpetology, Part 4, Salienta. Verlag, Pfeil, Munich, pp 1–276Google Scholar
  76. Sanderson MJ (2002) Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. Mol Biol Evol 19:1218–1231CrossRefGoogle Scholar
  77. Sanderson MJ (2003) r8s: inferring absolute rates of evolution and divergence times in the absence of a molecular clock. Bioinformatics 19:301–302PubMedCrossRefGoogle Scholar
  78. Schmid M, Sims SH, Haaf T, Macgregor HC (1986) Chromosome banding in amphibia X. 18S and 28S ribosomal RNA genes, nucleolus organizers and nucleoli in Gastrotheca riobambae. Chromosoma 94:139–145CrossRefGoogle Scholar
  79. Schmid M, Steinlein C (2001) Sex chromosomes, sex-linked genes, and sex determination in the vertebrate class Amphibia. In: Scherer G, Schmid M (eds) Genes and mechanisms in vertebrate sex determination. Verlag, Basel, pp 143–176CrossRefGoogle Scholar
  80. Schmid M, Steinlein C, Bogart JP et al (2010) The chromosomes of terraranan frogs. Cytogenetic Genome Res 130–131:1–568CrossRefGoogle Scholar
  81. Schmid M, Steinlein C, Friedl R et al (1990) Chromosome banding in Amphibia. XV. Two types of Y chromosomes and heterochromatin hypervariability in Gastrotheca pseustes (Anura, Hylidae). Chromosoma 99:413–423CrossRefGoogle Scholar
  82. Sharbel TF, Green DM, Houben A (1998) B-chromosome origin in the endemic New Zealand frog Leiopelma hochstetteri through sex chromosome devolution. Genome 41:14–22PubMedGoogle Scholar
  83. Skaletsky H, Kuroda-Kawaguchi T, Minx PJ et al (2003) The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature 432:823–837Google Scholar
  84. Stöck M, Horn A, Grossen C et al (2011) Ever-young sex chromosomes in European tree frogs. PLoS Biol 9:e1001062PubMedCrossRefGoogle Scholar
  85. Stöck M, Ustinova J, Lamatsch DK et al (2009) A vertebrate reproductive system involving three ploidy levels: Hybrid origin of triploids in a contact zone of diploid and tetraploid Paleartic green toads (Bufo viridis subgroup). Evolution 64:944–959PubMedCrossRefGoogle Scholar
  86. Straub T, Becker PB (2007) Dosage compensation: the beginning and end of a generalization. Nat Rev Genet 8:47–57PubMedCrossRefGoogle Scholar
  87. Svartman M, Stone G, Stanyon R (2005) Molecular cytogenetics discards polyploidy in mammals. Genomics 85:425–430PubMedCrossRefGoogle Scholar
  88. Tihen JA, Wake DB (1981) Vertebrae of plethodontid salamanders from the Lower Miocene of Montana. J Herpetology 15:35–40CrossRefGoogle Scholar
  89. Tymowska J (1991) Polyploidy and cytogenetic variation in frogs of the genus Xenopus. In: Green DS, Sessions SK (eds) Amphibian cytogenetics and evolution. Academic Press, San Diego, pp 259–297Google Scholar
  90. Uzzell T, Berger L, Günther R (1975) Diploid and triploid progeny from a diploid female of Rana esculenta (Amphibia Salientia). Proc Acad Nat Sci Philadelphia 127:81–91Google Scholar
  91. Wiens JJ (2011) Re-evolution of lost mandibular teeth in frogs after more than 200 million years, and re-evaluating Dollo’s Law. Evolution 65:1283–1296PubMedCrossRefGoogle Scholar
  92. Wiens JJ, Sukumaran J, Pyron RA, Brown RM (2009) Evolutionary and biogeographic origins of high tropical diversity in Old World frogs (Ranidae). Evolution 63:1217–1231PubMedCrossRefGoogle Scholar
  93. Wolfe KH (2001) Yesterdays’s polyploids and the mystery of diploidization. Nat Rev Genet 2:333–341PubMedCrossRefGoogle Scholar
  94. Yoshimoto S, Ikeda K, Izutsu Y et al (2010) Opposite roles of DMRT1 and its W-linked paralog, DM-W, in sexual dimorphism of Xenopus laevis: implications of a ZZ/ZW-type sex-determining system. Development 137:2519–2526PubMedCrossRefGoogle Scholar
  95. Yoshimoto S, Okada E, Umemoto H et al (2008) A W-linked DM-domain gene, DM-W, participates in primary ovary development in Xenopus laevis. Proc Nat Acad Sci 105:2469–2474PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ben J. Evans
    • 1
  • R. Alexander Pyron
    • 2
  • John J. Wiens
    • 3
  1. 1.Department of BiologyMcMaster UniversityHamiltonCanada
  2. 2.Department of Biological SciencesThe George Washington UniversityWashingtonUSA
  3. 3.Department of Ecology and EvolutionStony Brook UniversityStony BrookUSA

Personalised recommendations