Two Rounds of Whole-Genome Duplication: Evidence and Impact on the Evolution of Vertebrate Innovations


The origin and evolution of the vertebrates have been linked to the study of genome duplications since Susumo Ohno ventured the 2R-hypothesis, suggesting that the successful diversification of complex vertebrates was facilitated by polyploidization in the stem vertebrate ancestor due to two rounds of whole-genome duplication (2R-WGD). This chapter first reviews evidence supporting Ohno’s 2R-hypothesis and gathers information about the timing and mechanisms underlying the 2R-WGD. Second, this chapter describes the impact of the 2R-WGD on the evolution of the vertebrate genome structure, gene number, and the evolutionary dynamics of the functional fate of vertebrate ohnologs (paralogous genes that originated by WGD) in comparison with non-vertebrate chordate gene homologs. Finally, this review discusses the functional consequences of the 2R-WGD on the origin and evolution of vertebrate innovations compared with urochordates and cephalochordates, paying special attention to the origin of neural crest cells, placodes, and the big complex brain, key features that probably facilitated the transition from ancestral filter-feeding non-vertebrate chordates to voracious vertebrate predators. Currently available data, however, seem to suggest that these putative key features were present to at least some extent in stem Olfactores; hence, the impact of the 2R-WGD may not be related to the immediate origin of vertebrate innovations, but to the subsequent diversification of a wide variety of complex structures that facilitated the successful radiation of vertebrates.


Gene Regulatory Network Genome Duplication Neural Crest Cell Tandem Gene Duplication Elephant Shark 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work has been supported by grant BFU2010-14875 from the Ministerio de Ciencia e Innovación (Spain). I would like to thank Julian Catchen for his generous support on the Synteny Database, and Ingo Braasch, John H. Postlethwait, Ricard Albalat, and Adriana Rodriguez for their valuable comments on the chapter, and cheerful and endless discussions on “2R, or not 2R, that is the question … on vertebrate innovations”.


  1. Abrusán G, Krambeck H-J (2006) Competition may determine the diversity of transposable elements. Theor Popul Biol 70(3):364–375PubMedGoogle Scholar
  2. Aburomia R, Khaner O, Sidow A (2003) Functional evolution in the ancestral lineage of vertebrates or when genomic complexity was wagging its morphological tail. J Struct Funct Genomics 3(1–4):45–52PubMedGoogle Scholar
  3. Ahn S, Tanksley SD (1993) Comparative linkage maps of the rice and maize genomes. Proc Natl Acad Sci U S A 90(17):7980–7984PubMedGoogle Scholar
  4. Albalat R (2009) The retinoic acid machinery in invertebrates: ancestral elements and vertebrate innovations. Mol Cell Endocrinol 313(1–2):23–35PubMedGoogle Scholar
  5. Albalat R, Brunet F, Laudet V, Schubert M (2011) Evolution of retinoid and steroid signaling: vertebrate diversification from an amphioxus perspective. Genome Biol Evol 3:985–1005PubMedGoogle Scholar
  6. Andreakis N, D’Aniello S, Albalat R, Patti FP, Garcia-Fernandez J, Procaccini G, Sordino P, Palumbo A (2011) Evolution of the nitric oxide synthase family in metazoans. Mol Biol Evol 28(1):163–179PubMedGoogle Scholar
  7. Araki I, Terazawa K, Satoh N (1996) Duplication of an amphioxus myogenic bHLH gene is independent of vertebrate myogenic bHLH gene duplication. Gene 171(2):231–236PubMedGoogle Scholar
  8. Bailey W, Kim J, Wagner G, Ruddle F (1997) Phylogenetic reconstruction of vertebrate Hox cluster duplications. Mol Biol Evol 14:843–853PubMedGoogle Scholar
  9. Bassham S, Cañestro C, Postlethwait JH (2008) Evolution of developmental roles of Pax2/5/8 paralogs after independent duplication in urochordate and vertebrate lineages. BMC Biol 6:35PubMedGoogle Scholar
  10. Bassham S, Postlethwait JH (2005) The evolutionary history of placodes: a molecular genetic investigation of the larvacean urochordate Oikopleura dioica. Development 132(19):4259–4272PubMedGoogle Scholar
  11. Bejerano G, Lowe CB, Ahituv N, King B, Siepel A, Salama SR, Rubin EM, Kent WJ, Haussler D (2006) A distal enhancer and an ultra conserved exon are derived from a novel retroposon. Nature 441(7089):87–90PubMedGoogle Scholar
  12. Bennetzen JL (2005) Transposable elements, gene creation and genome rearrangement in flowering plants. Curr Opin Genet Dev 15(6):621–627PubMedGoogle Scholar
  13. Bertrand S, Campo-Paysaa F, Camasses A, Garcia-Fernandez J, Escriva H (2009) Actors of the tyrosine kinase receptor downstream signaling pathways in amphioxus. Evol Dev 11(1):13–26PubMedGoogle Scholar
  14. Birchler JA, Veitia RA (2007) The gene balance hypothesis: from classical genetics to modern genomics. Plant Cell 19(2):395–402PubMedGoogle Scholar
  15. Birchler JA, Veitia RA (2010) The gene balance hypothesis: implications for gene regulation, quantitative traits and evolution. New Phytol 186(1):54–62PubMedGoogle Scholar
  16. Bourlat SJ, Juliusdottir T, Lowe CJ, Freeman R, Aronowicz J, Kirschner M, Lander ES, Thorndyke M, Nakano H, Kohn AB, Heyland A, Moroz LL, Copley RR, Telford MJ (2006) Deuterostome phylogeny reveals monophyletic chordates and the new phylum Xenoturbellida. Nature 444(7115):85–88PubMedGoogle Scholar
  17. Bourque G, Leong B, Vega VB, Chen X, Lee YL, Srinivasan KG, Chew JL, Ruan Y, Wei CL, Ng HH, Liu ET (2008) Evolution of the mammalian transcription factor binding repertoire via transposable elements. Genome Res 18(11):1752–1762PubMedGoogle Scholar
  18. Braasch I, Postlethwait JH (2011) The teleost agouti-related protein 2 gene is an ohnolog gone missing from the tetrapod genome. Proc Natl Acad Sci U S A 108(13):E47–E48PubMedGoogle Scholar
  19. Braasch I, Volff JN, Schartl M (2009) The endothelin system: evolution of vertebrate-specific ligand–receptor interactions by three rounds of genome duplication. Mol Biol Evol 26(4):783–799PubMedGoogle Scholar
  20. Bridgham JT, Brown JE, Rodriguez-Mari A, Catchen JM, Thornton JW (2008) Evolution of a new function by degenerative mutation in cephalochordate steroid receptors. PLoS Genet 4(9):e1000191PubMedGoogle Scholar
  21. Brusca RC, Brusca GJ (2002) Invertebrates. Sinauer Associates, SunderlandGoogle Scholar
  22. Campo-Paysaa F, Semon M, Cameron RA, Peterson KJ, Schubert M (2011) microRNA complements in deuterostomes: origin and evolution of microRNAs. Evol Dev 13(1):15–27PubMedGoogle Scholar
  23. Cañestro C, Albalat R (2012) Transposon diversity is higher in amphioxus than in vertebrates: functional and evolutionary inferences. Brief Funct Genomics 11(2):131–141PubMedGoogle Scholar
  24. Cañestro C, Albalat R, Hjelmqvist L, Godoy L, Jornvall H, Gonzalez-Duarte R (2002a) Ascidian and amphioxus Adh genes correlate functional and molecular features of the ADH family expansion during vertebrate evolution. J Mol Evol 54(1):81–89PubMedGoogle Scholar
  25. Cañestro C, Bassham S, Postlethwait JH (2003a) Seeing chordate evolution through the Ciona genome sequence. Genome Biol 4(3):208–211PubMedGoogle Scholar
  26. Cañestro C, Bassham S, Postlethwait JH (2005) Development of the central nervous system in the larvacean Oikopleura dioica and the evolution of the chordate brain. Dev Biol 285(2):298–315PubMedGoogle Scholar
  27. Cañestro C, Catchen JM, Rodriguez-Mari A, Yokoi H, Postlethwait JH (2009) Consequences of lineage-specific gene loss on functional evolution of surviving paralogs: ALDH1A and retinoic acid signaling in vertebrate genomes. PLoS Genet 5(5):e1000496PubMedGoogle Scholar
  28. Cañestro C, Godoy L, Gonzàlez-Duarte R, Albalat R (2003b) Comparative expression analysis of Adh3 during arthropod, urochordate, cephalochordate and vertebrate development challenges its predicted housekeeping role. Evol Dev 5(2):157–162PubMedGoogle Scholar
  29. Cañestro C, Gonzàlez-Duarte R, Albalat R (2002b) Minisatellite instability at the Adh locus reveals somatic polymorphism in amphioxus. Nucleic Acids Res 30(13):2871–2876PubMedGoogle Scholar
  30. Cañestro C, Hjelmqvist L, Albalat R, Garcia-Fernàndez J, Gonzàlez-Duarte R, Jörnvall H (2000) Amphioxus alcohol dehydrogenase is a class 3 form of single type and of structural conservation but with unique developmental expression. Eur J Biochem 267:6511–6518PubMedGoogle Scholar
  31. Cañestro C, Postlethwait JH (2007) Development of a chordate anterior–posterior axis without classical retinoic acid signaling. Dev Biol 305(2):522–538PubMedGoogle Scholar
  32. Cañestro C, Postlethwait JH, Gonzàlez-Duarte R, Albalat R (2006) Is retinoic acid genetic machinery a chordate innovation? Evol Dev 8(5):394–406PubMedGoogle Scholar
  33. Cañestro C, Yokoi H, Postlethwait JH (2007) Evolutionary developmental biology and genomics. Nat Rev Genet 8(12):932–942PubMedGoogle Scholar
  34. Catchen JM, Braasch I, Postlethwait JH (2011) Conserved synteny and the zebrafish genome. Methods Cell Biol 104:259–285PubMedGoogle Scholar
  35. Catchen JM, Conery JS, Postlethwait JH (2009) Automated identification of conserved synteny after whole-genome duplication. Genome Res 19(8):1497–1505PubMedGoogle Scholar
  36. Chain FJ, Evans BJ (2006) Multiple mechanisms promote the retained expression of gene duplicates in the tetraploid frog Xenopus laevis. PLoS Genet 2(4):e56PubMedGoogle Scholar
  37. Comai L (2000) Genetic and epigenetic interactions in allopolyploid plants. Plant Mol Biol 43(2–3):387–399PubMedGoogle Scholar
  38. Conant GC, Wolfe KH (2008) Turning a hobby into a job: how duplicated genes find new functions. Nat Rev Genet 9(12):938–950PubMedGoogle Scholar
  39. Coulier F, Popovici C, Villet R, Birnbaum D (2000) MetaHox gene clusters. J Exp Zool 288(4):345–351PubMedGoogle Scholar
  40. D’Aniello S, Irimia M, Maeso I, Pascual-Anaya J, Jimenez-Delgado S, Bertrand S, Garcia-Fernandez J (2008) Gene expansion and retention leads to a diverse tyrosine kinase superfamily in amphioxus. Mol Biol Evol 25(9):1841–1854PubMedGoogle Scholar
  41. Danchin EG, Pontarotti P (2004) Towards the reconstruction of the bilaterian ancestral pre-MHC region. Trends Genet 20(12):587–591PubMedGoogle Scholar
  42. Dehal P, Boore JL (2005) Two rounds of whole genome duplication in the ancestral vertebrate. PLoS Biol 3(10):e314PubMedGoogle Scholar
  43. Dehal P, Satou Y, Campbell RK, Chapman J, Degnan B, De Tomoso A, Davidson B, Di Gregorio A, Gelpke M, Goodstein DM, Harafuji N, Hastings KEM, Ho I, Hotta K, Huang W, Kawashima T, Lemaire P, Martinez D, Meinertzhagen IA, Necula S, Nonaka M, Putnam N, Rash S, Saiga H, Satake M, Terry A, Yamada L, Wang H-G, Awazu S, Azumi K, Boore J, Branno M, Chin-bow S, DeSantis R, Doyle S, Francino P, Keys DN, Haga S, Hayashi H, Hino K, Imai KS, Inaba K, Kano S, Kobayashi K, Kobayashi M, Lee B-I, Makabe KW, Manohar C, Matassi G, Medina M, Mochizuki Y, Mount S, Morishita T, Miura S, Nakayama A, Nishizaka S, Nomoto H, Ohta F, Oishi K, Rigoutsos I, Sano M, Sasaki A, Sasakura Y, Shoguchi E, Shin-i T, Spagnuolo A, Stainier D, Suzuki MM, Tassy O, Takatori N, Tokuoka M, Yagi K, Yoshizaki F, Wada S, Zhang C, Hyatt PD, Larimer F, Detter C, Doggett N, Glavina T, Hawkins T, Richardson P, Lucas S, Kohara Y, Levine M, Satoh N, Rokhsar DS (2002) The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science 298(5601):2157–2167PubMedGoogle Scholar
  44. Delsuc F, Brinkmann H, Chourrout D, Philippe H (2006) Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature 439(7079):965–968PubMedGoogle Scholar
  45. Denoeud F, Henriet S, Mungpakdee S, Aury JM, Da Silva C, Brinkmann H, Mikhaleva J, Olsen LC, Jubin C, Cañestro C, Bouquet JM, Danks G, Poulain J, Campsteijn C, Adamski M, Cross I, Yadetie F, Muffato M, Louis A, Butcher S, Tsagkogeorga G, Konrad A, Singh S, Jensen MF, Cong EH, Eikeseth-Otteraa H, Noel B, Anthouard V, Porcel BM, Kachouri-Lafond R, Nishino A, Ugolini M, Chourrout P, Nishida H, Aasland R, Huzurbazar S, Westhof E, Delsuc F, Lehrach H, Reinhardt R, Weissenbach J, Roy SW, Artiguenave F, Postlethwait JH, Manak JR, Thompson EM, Jaillon O, Du Pasquier L, Boudinot P, Liberles DA, Volff JN, Philippe H, Lenhard B, Roest Crollius H, Wincker P, Chourrout D (2010) Plasticity of animal genome architecture unmasked by rapid evolution of a pelagic tunicate. Science 330(6009):1381–1385PubMedGoogle Scholar
  46. Donoghue PC, Graham A, Kelsh RN (2008) The origin and evolution of the neural crest. BioEssays 30(6):530–541PubMedGoogle Scholar
  47. Durand D (2003) Vertebrate evolution: doubling and shuffling with a full deck. Trends Genet 19(1):2–5PubMedGoogle Scholar
  48. Ebner B, Panopoulou G, Vinogradov SN, Kiger L, Marden MC, Burmester T, Hankeln T (2010) The globin gene family of the cephalochordate amphioxus: implications for chordate globin evolution. BMC Evol Biol 10:370PubMedGoogle Scholar
  49. Edvardsen RB, Seo HC, Jensen MF, Mialon A, Mikhaleva J, Bjordal M, Cartry J, Reinhardt R, Weissenbach J, Wincker P, Chourrout D (2005) Remodelling of the homeobox gene complement in the tunicate Oikopleura dioica. Curr Biol 15(1):R12–R13PubMedGoogle Scholar
  50. Escriva H, Bertrand S, Germain P, Robinson-Rechavi M, Umbhauer M, Cartry J, Duffraisse M, Holland L, Gronemeyer H, Laudet V (2006) Neofunctionalization in vertebrates: the example of retinoic acid receptors. PLoS Genet 2(7):e102PubMedGoogle Scholar
  51. Ferrier DE, Dewar K, Cook A, Chang JL, Hill-Force A, Amemiya C (2005) The chordate ParaHox cluster. Curr Biol 15(20):R820–R822PubMedGoogle Scholar
  52. Ferrier DE, Minguillon C, Holland PW, Garcia-Fernandez J (2000) The amphioxus Hox cluster: deuterostome posterior flexibility and Hox14. Evol Dev 2(5):284–293PubMedGoogle Scholar
  53. Ferrier DEK, Minguillón C, Cebrián C, Garcia-Fernàndez J (2001) Amphioxus Evx genes: implications for the evolution of the midbrain–hindbrain boundary and the chordate tailbud. Dev Biol 237(2):270–281PubMedGoogle Scholar
  54. Ferris SD, Portnoy SL, Whitt GS (1979) The roles of speciation and divergence time in the loss of duplicate gene expression. Theor Popul Biol 15(1):114–139Google Scholar
  55. Feschotte C (2008) Transposable elements and the evolution of regulatory networks. Nat Rev Genet 9(5):397–405PubMedGoogle Scholar
  56. Force A, Amores A, Postlethwait JH (2002) Hox cluster organization in the jawless vertebrate Petromyzon marinus. J Exp Zool 294(1):30–46PubMedGoogle Scholar
  57. Force A, Lynch M, Pickett FB, Amores A, Yan Y-L, Postlethwait J (1999) Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151(4):1531–1545PubMedGoogle Scholar
  58. Fredriksson R, Lagerstrom MC, Lundin LG, Schioth HB (2003) The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 63(6):1256–1272PubMedGoogle Scholar
  59. Fried C, Prohaska SJ, Stadler PF (2003) Independent Hox-cluster duplications in lampreys. J Exp Zoolog Part B Mol Dev Evol 299(1):18–25Google Scholar
  60. Friedman R, Hughes AL (2001) Pattern and timing of gene duplication in animal genomes. Genome Res 11(11):1842–1847PubMedGoogle Scholar
  61. Furlong R, Holland P (2002) Were vertebrates octoploid? Philos T Roy Soc B 357:531–544Google Scholar
  62. Furlong RF, Younger R, Kasahara M, Reinhardt R, Thorndyke M, Holland PW (2007) A degenerate ParaHox gene cluster in a degenerate vertebrate. Mol Biol Evol 24(12):2681–2686PubMedGoogle Scholar
  63. Gans C, Northcutt RG (1983) Neural crest and the origin of vertebrates: a new head. Science 220:268–274PubMedGoogle Scholar
  64. Garcia-Fernandez J (2005) The genesis and evolution of homeobox gene clusters. Nat Rev Genet 6(12):881–892PubMedGoogle Scholar
  65. Garcia-Fernàndez J, Ferrier DE, Minguillón C, Cebrián C (2001) The amphioxus genome in evo-devo: archetype or “cul de sac”. Int J Dev Biol 45(S1):S137–S138Google Scholar
  66. Garcia-Fernàndez J, Holland PW (1994) Archetypal organization of the amphioxus Hox gene cluster. Nature 370(6490):563–566Google Scholar
  67. Gaut BS, Doebley JF (1997) DNA sequence evidence for the segmental allotetraploid origin of maize. Proc Natl Acad Sci U S A 94(13):6809–6814PubMedGoogle Scholar
  68. Gitelman I (2007) Evolution of the vertebrate twist family and synfunctionalization: a mechanism for differential gene loss through merging of expression domains. Mol Biol Evol 24(9):1912–1925PubMedGoogle Scholar
  69. Gout JF, Duret L, Kahn D (2009) Differential retention of metabolic genes following whole-genome duplication. Mol Biol Evol 26(5):1067–1072PubMedGoogle Scholar
  70. Gu X, Wang Y, J G (2002) Age distribution of human gene families shows significant roles of both large- and small-scale duplications in vertebrate evolution. Nat Genet 31:205–209PubMedGoogle Scholar
  71. Heimberg AM, Sempere LF, Moy VN, Donoghue PC, Peterson KJ (2008) microRNAs and the advent of vertebrate morphological complexity. Proc Natl Acad Sci U S A 105(8):2946–2950PubMedGoogle Scholar
  72. Hellsten U, Khokha MK, Grammer TC, Harland RM, Richardson P, Rokhsar DS (2007) Accelerated gene evolution and subfunctionalization in the pseudotetraploid frog Xenopus laevis. BMC Biol 5:31PubMedGoogle Scholar
  73. Herpin A, Braasch I, Kraeussling M, Schmidt C, Thoma EC, Nakamura S, Tanaka M, Schartl M (2010) Transcriptional rewiring of the sex determining dmrt1 gene duplicate by transposable elements. PLoS Genet 6(2):e1000844PubMedGoogle Scholar
  74. Hoekstra HE, Coyne JA (2007) The locus of evolution: evo devo and the genetics of adaptation. Evolution 61(5):995–1016PubMedGoogle Scholar
  75. Hoffmann FG, Opazo JC, Storz JF (2012) Whole-genome duplications spurred the functional diversification of the globin gene superfamily in vertebrates. Mol Biol Evol 29:303−312PubMedGoogle Scholar
  76. Holland LZ (2007) Developmental biology: a chordate with a difference. Nature 447(7141):153–155PubMedGoogle Scholar
  77. Holland LZ (2009) Chordate roots of the vertebrate nervous system: expanding the molecular toolkit. Nat Rev Neurosci 10(10):736–746PubMedGoogle Scholar
  78. Holland LZ, Albalat R, Azumi K, Benito-Gutierrez E, Blow MJ, Bronner-Fraser M, Brunet F, Butts T, Candiani S, Dishaw LJ, Ferrier DE, Garcia-Fernandez J, Gibson-Brown JJ, Gissi C, Godzik A, Hallbook F, Hirose D, Hosomichi K, Ikuta T, Inoko H, Kasahara M, Kasamatsu J, Kawashima T, Kimura A, Kobayashi M, Kozmik Z, Kubokawa K, Laudet V, Litman GW, McHardy AC, Meulemans D, Nonaka M, Olinski RP, Pancer Z, Pennacchio LA, Pestarino M, Rast JP, Rigoutsos I, Robinson-Rechavi M, Roch G, Saiga H, Sasakura Y, Satake M, Satou Y, Schubert M, Sherwood N, Shiina T, Takatori N, Tello J, Vopalensky P, Wada S, Xu A, Ye Y, Yoshida K, Yoshizaki F, Yu JK, Zhang Q, Zmasek CM, de Jong PJ, Osoegawa K, Putnam NH, Rokhsar DS, Satoh N, Holland PW (2008) The amphioxus genome illuminates vertebrate origins and cephalochordate biology. Genome Res 18(7):1100–1111PubMedGoogle Scholar
  79. Holland LZ, Short S (2008) Gene duplication, co-option and recruitment during the origin of the vertebrate brain from the invertebrate chordate brain. Brain Behav Evol 72(2):91–105PubMedGoogle Scholar
  80. Holland PWH, Garcia-Fernàndez J, Williams NA, Sidow A (1994) Gene duplications and the origins of vertebrate development. Development (Suppl.):125–133Google Scholar
  81. Holland PWH, Koschorz B, Holland LZ, Herrmann BG (1995) Conservation of Brachyury (T) genes in amphioxus and vertebrates: developmental and evolutionary implications. Development 121:4283–4291PubMedGoogle Scholar
  82. Hufton AL, Groth D, Vingron M, Lehrach H, Poustka AJ, Panopoulou G (2008) Early vertebrate whole genome duplications were predated by a period of intense genome rearrangement. Genome Res 18(10):1582–1591PubMedGoogle Scholar
  83. Hughes AL (1994) The evolution of functionally novel proteins after gene duplication. Proc Roy Soc Lond B 256:119–124Google Scholar
  84. Hughes AL (1999) Phylogenies of developmentally important proteins do not support the hypothesis of two rounds of genome duplication early in vertebrate history. J Mol Evol 48(5):565–576PubMedGoogle Scholar
  85. Hughes AL, Friedman R (2003) 2R or not 2R: testing hypotheses of genome duplication in early vertebrates. J Struct Funct Genomics 3(1–4):85–93PubMedGoogle Scholar
  86. Huminiecki L, Heldin CH (2010) 2R and remodeling of vertebrate signal transduction engine. BMC Biol 8:146PubMedGoogle Scholar
  87. Imai KS, Stolfi A, Levine M, Satou Y (2009) Gene regulatory networks underlying the compartmentalization of the Ciona central nervous system. Development 136(2):285–293PubMedGoogle Scholar
  88. Irimia M, Denuc A, Burguera D, Somorjai I, Martin-Duran JM, Genikhovich G, Jimenez-Delgado S, Technau U, Roy SW, Marfany G, Garcia-Fernandez J (2011) Stepwise assembly of the Nova-regulated alternative splicing network in the vertebrate brain. Proc Natl Acad Sci U S A 108(13):5319–5324PubMedGoogle Scholar
  89. Irvine SQ, Carr JL, Bailey WJ, Kawasaki K, Shimizu N, Amemiya CT, Ruddle FH (2002) Genomic analysis of Hox clusters in the sea lamprey Petromyzon marinus. J Exp Zool 294:47–62PubMedGoogle Scholar
  90. Jeffery WR (2007) Chordate ancestry of the neural crest: new insights from ascidians. Semin Cell Dev Biol 18:481−491PubMedGoogle Scholar
  91. Jeffery WR, Chiba T, Krajka FR, Deyts C, Satoh N, Joly JS (2008) Trunk lateral cells are neural crest-like cells in the ascidian Ciona intestinalis: insights into the ancestry and evolution of the neural crest. Dev Biol 324(1):152–160PubMedGoogle Scholar
  92. Jeffery WR, Strickler AG, Yamamoto Y (2004) Migratory neural crest-like cells form body pigmentation in a urochordate embryo. Nature 431(7009):696–699PubMedGoogle Scholar
  93. Jimenez-Delgado S, Pascual-Anaya J, Garcia-Fernandez J (2009) Implications of duplicated cis-regulatory elements in the evolution of metazoans: the DDI model or how simplicity begets novelty. Brief Funct Genomic Proteomic 8(4):266–275PubMedGoogle Scholar
  94. Kappen C, Schughart K, Ruddle FH (1989) Two steps in the evolution of Antennapedia-class vertebrate homeobox genes. Proc Natl Acad Sci U S A 86(14):5459–5463PubMedGoogle Scholar
  95. Karabinos A, Bhattacharya D (2000) Molecular evolution of calmodulin and calmodulin-like genes in the cephalochordate Branchiostoma. J Mol Evol 51(2):141–148PubMedGoogle Scholar
  96. Kasahara M (2007) The 2R hypothesis: an update. Curr Opin Immunol 19(5):547–552PubMedGoogle Scholar
  97. Kassahn KS, Dang VT, Wilkins SJ, Perkins AC, Ragan MA (2009) Evolution of gene function and regulatory control after whole-genome duplication: comparative analyses in vertebrates. Genome Res 19(8):1404–1418PubMedGoogle Scholar
  98. Katsanis N, Fitzgibbon J, Fisher EMC (1996) Paralogy mapping: identification of a region in the human MHC triplicated onto human chromosomes 1 and 9 allows the prediction and isolation of novel PBX and NOTCH loci. Genomics 35:101–108PubMedGoogle Scholar
  99. Kohn M, Hogel J, Vogel W, Minich P, Kehrer-Sawatzki H, Graves JA, Hameister H (2006) Reconstruction of a 450-My-old ancestral vertebrate protokaryotype. Trends Genet 22(4):203–210PubMedGoogle Scholar
  100. Kuraku S (2008) Insights into cyclostome phylogenomics: pre-2R or post-2R. Zoolog Sci 25(10):960–968PubMedGoogle Scholar
  101. Kuraku S (2010) Palaeophylogenomics of the vertebrate ancestor—impact of hidden paralogy on hagfish and lamprey gene phylogeny. Integr Comp Biol 50(1):124–129PubMedGoogle Scholar
  102. Kuraku S (2011) Hox gene clusters of early vertebrates: do they serve as reliable markers for genome evolution? Genomics Proteomics Bioinformatics 9(3):97–103PubMedGoogle Scholar
  103. Kuraku S, Meyer A, Kuratani S (2009) Timing of genome duplications relative to the origin of the vertebrates: did cyclostomes diverge before or after? Mol Biol Evol 26(1):47–59PubMedGoogle Scholar
  104. Kuratani S (2009) Insights into neural crest migration and differentiation from experimental embryology. Development 136(10):1585–1589PubMedGoogle Scholar
  105. Kuratani S, Ota KG (2008) Hagfish (cyclostomata, vertebrata): searching for the ancestral developmental plan of vertebrates. BioEssays 30(2):167–172PubMedGoogle Scholar
  106. Laisney JA, Braasch I, Walter RB, Meierjohann S, Schartl M (2010) Lineage-specific co-evolution of the Egf receptor/ligand signaling system. BMC Evol Biol 10:27PubMedGoogle Scholar
  107. Larhammar D, Lundin L, Hallbook F (2002) The human Hox-bearing chromosome regions did arise by block or chromosome (or even genome) duplications. Genome Res 12(12):1910–1920PubMedGoogle Scholar
  108. Lee CT, Risom T, Strauss WM (2007) Evolutionary conservation of microRNA regulatory circuits: an examination of microRNA gene complexity and conserved microRNA-target interactions through metazoan phylogeny. DNA Cell Biol 26(4):209–218PubMedGoogle Scholar
  109. Leveugle M, Prat K, Perrier N, Birnbaum D, Coulier F (2003) ParaDB: a tool for paralogy mapping in vertebrate genomes. Nucleic Acids Res 31(1):63–67PubMedGoogle Scholar
  110. Louis A, Roest Crollius H, Robinson-Rechavi M (2012) How much does the amphioxus genome represent the ancestor of chordates? Brief Funct Genomics 11(2):89–95PubMedGoogle Scholar
  111. Lowe CB, Bejerano G, Haussler D (2007) Thousands of human mobile element fragments undergo strong purifying selection near developmental genes. Proc Natl Acad Sci U S A 104(19):8005–8010PubMedGoogle Scholar
  112. Lundin LG (1979) Evolutionary conservation of large chromosomal segments reflected in mammalian gene maps. Clin Genet 16(2):72–81PubMedGoogle Scholar
  113. Lundin LG (1993) Evolution of the vertebrate genome as relected in paralogous chromosomal regions in man and the house mouse. Genomics 16:1–19PubMedGoogle Scholar
  114. Lundin LG, Larhammar D, Hallbook F (2003) Numerous groups of chromosomal regional paralogies strongly indicate two genome doublings at the root of the vertebrates. J Struct Funct Genomics 3(1–4):53–63PubMedGoogle Scholar
  115. Lynch M, Conery J (2000) The evolutionary fate and consequences of gene duplication. Science 290(5494):1151–1155PubMedGoogle Scholar
  116. Lynch M, Force A (2000) The origin of interspecific genomic incompatibility via gene duplication. Am Nat 156:590–605Google Scholar
  117. Lynch M, O’Hely M, Walsh B, Force A (2001) The probability of preservation of a newly arisen gene duplicate. Genetics 159(4):1789–1804PubMedGoogle Scholar
  118. Lynch VJ, Leclerc RD, May G, Wagner GP (2011) Transposon-mediated rewiring of gene regulatory networks contributed to the evolution of pregnancy in mammals. Nat Genet 43:1154−1159PubMedGoogle Scholar
  119. Lynch VJ, Wagner GP (2009) Multiple chromosomal rearrangements structured the ancestral vertebrate Hox-bearing protochromosomes. PLoS Genet 5(1):e1000349PubMedGoogle Scholar
  120. Makino T, McLysaght A (2010) Ohnologs in the human genome are dosage balanced and frequently associated with disease. Proc Natl Acad Sci U S A 107(20):9270–9274PubMedGoogle Scholar
  121. Martinez-Morales JR, Henrich T, Ramialison M, Wittbrodt J (2007) New genes in the evolution of the neural crest differentiation program. Genome Biol 8(3):R36PubMedGoogle Scholar
  122. Matzke MA, Matzke AJ (1998) Polyploidy and transposons. Trends Ecol Evol 13(6):241PubMedGoogle Scholar
  123. Matzke MA, Mette MF, Matzke AJ (2000) Transgene silencing by the host genome defense: implications for the evolution of epigenetic control mechanisms in plants and vertebrates. Plant Mol Biol 43(2–3):401–415PubMedGoogle Scholar
  124. Mazet F, Hutt JA, Milloz J, Millard J, Graham A, Shimeld SM (2005) Molecular evidence from Ciona intestinalis for the evolutionary origin of vertebrate sensory placodes. Dev Biol 282(2):494–508PubMedGoogle Scholar
  125. McClintock JM, Carlson R, Mann DM, Prince VE (2001) Consequences of Hox gene duplication in the vertebrates: an investigation of the zebrafish Hox paralogue group 1 genes. Development 128(13):2471–2484PubMedGoogle Scholar
  126. McLysaght A, Hokamp K, Wolfe KH (2002) Extensive genomic duplication during early chordate evolution. Nat Genet 31:200–204PubMedGoogle Scholar
  127. Meulemans D, Bronner-Fraser M (2004) Gene-regulatory interactions in neural crest evolution and development. Dev Cell 7(3):291–299PubMedGoogle Scholar
  128. Meulemans D, Bronner-Fraser M (2005) Central role of gene cooption in neural crest evolution. J Exp Zoolog B Mol Dev Evol 304(4):298–303Google Scholar
  129. Meulemans D, Bronner-Fraser M (2007) Insights from amphioxus into the evolution of vertebrate cartilage. PLoS One 2(8):e787PubMedGoogle Scholar
  130. Minguillon C, Ferrier DE, Cebrian C, Garcia-Fernandez J (2002) Gene duplications in the prototypical cephalochordate amphioxus. Gene 287(1–2):121–128PubMedGoogle Scholar
  131. Minguillon C, Jimenez-Delgado S, Panopoulou G, Garcia-Fernandez J (2003) The amphioxus Hairy family: differential fate after duplication. Development 130(24):5903–5914PubMedGoogle Scholar
  132. Muffato M, Louis A, Poisnel CE, Roest Crollius H (2010) Genomicus: a database and a browser to study gene synteny in modern and ancestral genomes. Bioinformatics 26(8):1119–1121PubMedGoogle Scholar
  133. Nadeau JH, Sankoff D (1997) Comparable rates of gene loss and functional divergence after genome duplications early in vertebrate evolution. Genetics 147(3):1259–1266PubMedGoogle Scholar
  134. Nakatani Y, Takeda H, Kohara Y, Morishita S (2007) Reconstruction of the vertebrate ancestral genome reveals dynamic genome reorganization in early vertebrates. Genome Res 17(9):1254–1265PubMedGoogle Scholar
  135. Naruse K, Tanaka M, Mita K, Shima A, Postlethwait J, Mitani H (2004) A medaka gene map: the trace of ancestral vertebrate proto-chromosomes revealed by comparative gene mapping. Genome Res 14(5):820–828PubMedGoogle Scholar
  136. Nelson JS (1994) Fishes of the world, 3rd edn. Wiley-Interscience, New YorkGoogle Scholar
  137. Nikitina N, Sauka-Spengler T, Bronner-Fraser M (2009) Chapter 1. Gene regulatory networks in neural crest development and evolution. Curr Top Dev Biol 86:1–14PubMedGoogle Scholar
  138. Northcutt RG, Gans C (1983) The genesis of neural crest and epidermal placodes: a reinterpretation of vertebrate origins. Quart Rev Biol 58:1–28PubMedGoogle Scholar
  139. Nowak MA, Boerlijst MC, Cooke J, Smith JM (1997) Evolution of genetic redundancy. Nature 388(6638):167–171PubMedGoogle Scholar
  140. Oda H, Wada H, Tagawa K, Akiyama-Oda Y, Satoh N, Humphreys T, Zhang S, Tsukita S (2002) A novel amphioxus cadherin that localizes to epithelial adherens junctions has an unusual domain organization with implications for chordate phylogeny. Evol Dev 4(6):426–434PubMedGoogle Scholar
  141. Ohno S (1970) Evolution by gene duplication. Springer, New YorkGoogle Scholar
  142. Ohno S, Wolf U, Atkins NB (1968) Evolution from fish to mammals by gene duplication. Hereditas 59(1):169–187PubMedGoogle Scholar
  143. Ota KG, Kuratani S (2007) Cyclostome embryology and early evolutionary history of vertebrates. Integr Comp Biol 47(3):329–337PubMedGoogle Scholar
  144. Otto SP (2007) The evolutionary consequences of polyploidy. Cell 131(3):452–462PubMedGoogle Scholar
  145. Panopoulou G, Hennig S, Groth D, Krause A, Poustka AJ, Herwig R, Vingron M, Lehrach H (2003) New evidence for genome-wide duplications at the origin of vertebrates using an amphioxus gene set and completed animal genomes. Genome Res 13(6A):1056–1066Google Scholar
  146. Paps J, Holland PW, Shimeld SM (2012) A genome-wide view of transcription factor gene diversity in chordate evolution: less gene loss in amphioxus? Brief Funct Genomics 11(2):177–186PubMedGoogle Scholar
  147. Parisod C, Alix K, Just J, Petit M, Sarilar V, Mhiri C, Ainouche M, Chalhoub B, Grandbastien MA (2010) Impact of transposable elements on the organization and function of allopolyploid genomes. New Phytol 186(1):37–45PubMedGoogle Scholar
  148. Paterson AH, Chapman BA, Kissinger JC, Bowers JE, Feltus FA, Estill JC (2006) Many gene and domain families have convergent fates following independent whole-genome duplication events in Arabidopsis, Oryza, Saccharomyces and Tetraodon. Trends Genet 22(11):597–602PubMedGoogle Scholar
  149. Pebusque MJ, Coulier F, Birnbaum D, Pontarotti P (1998) Ancient large-scale genome duplications: phylogenetic and linkage analyses shed light on chordate genome evolution. Mol Biol Evol 15(9):1145–1159PubMedGoogle Scholar
  150. Pendleton JW, Nagai BK, Murtha MT, Ruddle FH (1993) Expansion of the Hox gene family and the evolution of chordates. Proc Natl Acad Sci U S A 90:6300–6304PubMedGoogle Scholar
  151. Polak P, Domany E (2006) Alu elements contain many binding sites for transcription factors and may play a role in regulation of developmental processes. BMC Genomics 7:133PubMedGoogle Scholar
  152. Popovici C, Leveugle M, Birnbaum D, Coulier F (2001) Coparalogy: physical and functional clusterings in the human genome. Biochem Biophys Res Commun 288(2):362–370PubMedGoogle Scholar
  153. Postlethwait J, Amores A, Cresko W, Singer A, Yan YL (2004) Subfunction partitioning, the teleost radiation and the annotation of the human genome. Trends Genet 20(10):481–490PubMedGoogle Scholar
  154. Postlethwait JH (2007) The zebrafish genome in context: ohnologs gone missing. J Exp Zoolog B Mol Dev Evol 308(5):563–577Google Scholar
  155. Putnam NH, Butts T, Ferrier DE, Furlong RF, Hellsten U, Kawashima T, Robinson-Rechavi M, Shoguchi E, Terry A, Yu JK, Benito-Gutierrez EL, Dubchak I, Garcia-Fernandez J, Gibson-Brown JJ, Grigoriev IV, Horton AC, de Jong PJ, Jurka J, Kapitonov VV, Kohara Y, Kuroki Y, Lindquist E, Lucas S, Osoegawa K, Pennacchio LA, Salamov AA, Satou Y, Sauka-Spengler T, Schmutz J, Shin IT, Toyoda A, Bronner-Fraser M, Fujiyama A, Holland LZ, Holland PW, Satoh N, Rokhsar DS (2008) The amphioxus genome and the evolution of the chordate karyotype. Nature 453(7198):1064–1071PubMedGoogle Scholar
  156. Ravi V, Lam K, Tay BH, Tay A, Brenner S, Venkatesh B (2009) Elephant shark (Callorhinchus milii) provides insights into the evolution of Hox gene clusters in gnathostomes. Proc Natl Acad Sci U S A 106(38):16327–16332PubMedGoogle Scholar
  157. Robinson-Rechavi M, Boussau B, Laudet V (2004) Phylogenetic dating and characterization of gene duplications in vertebrates: the cartilaginous fish reference. Mol Biol Evol 21(3):580–586PubMedGoogle Scholar
  158. Roux J, Robinson-Rechavi M (2008) Developmental constraints on vertebrate genome evolution. PLoS Genet 4(12):e1000311PubMedGoogle Scholar
  159. Ruvinsky I, Silver LM (1997) Newly identified paralogous groups on mouse chromosomes 5 and 11 reveal the age of a T-box cluster duplication. Genomics 40(2):262–266PubMedGoogle Scholar
  160. SanMiguel P, Gaut BS, Tikhonov A, Nakajima Y, Bennetzen JL (1998) The paleontology of intergene retrotransposons of maize. Nat Genet 20(1):43–45PubMedGoogle Scholar
  161. SanMiguel P, Tikhonov A, Jin YK, Motchoulskaia N, Zakharov D, Melake-Berhan A, Springer PS, Edwards KJ, Lee M, Avramova Z, Bennetzen JL (1996) Nested retrotransposons in the intergenic regions of the maize genome. Science 274(5288):765–768PubMedGoogle Scholar
  162. Sauka-Spengler T, Meulemans D, Jones M, Bronner-Fraser M (2007) Ancient evolutionary origin of the neural crest gene regulatory network. Dev Cell 13(3):405–420PubMedGoogle Scholar
  163. Scannell DR, Byrne KP, Gordon JL, Wong S, Wolfe KH (2006) Multiple rounds of speciation associated with reciprocal gene loss in polyploid yeasts. Nature 440(7082):341–345PubMedGoogle Scholar
  164. Semon M, Wolfe KH (2007) Consequences of genome duplication. Curr Opin Genet Dev 17(6):505–512PubMedGoogle Scholar
  165. Semon M, Wolfe KH (2008) Preferential subfunctionalization of slow-evolving genes after allopolyploidization in Xenopus laevis. Proc Natl Acad Sci U S A 105(24):8333–8338PubMedGoogle Scholar
  166. Sempere LF, Cole CN, McPeek MA, Peterson KJ (2006) The phylogenetic distribution of metazoan microRNAs: insights into evolutionary complexity and constraint. J Exp Zool B Mol Dev Evol 306(6):575–588PubMedGoogle Scholar
  167. Seo HC, Edvardsen RB, Maeland AD, Bjordal M, Jensen MF, Hansen A, Flaat M, Weissenbach J, Lehrach H, Wincker P, Reinhardt R, Chourrout D (2004) Hox cluster disintegration with persistent anteroposterior order of expression in Oikopleura dioica. Nature 431(7004):67–71PubMedGoogle Scholar
  168. Sharman AC, Holland PWH (1998) Estimation of hox gene cluster number in lampreys. Int J Dev Biol 42:617–620PubMedGoogle Scholar
  169. Shemer G, Podbilewicz B (2000) Fusomorphogenesis: cell fusion in organ formation. Dev Dyn 218(1):30–51PubMedGoogle Scholar
  170. Shimeld SM, Holland PW (2000) Vertebrate innovations. Proc Natl Acad Sci U S A 97(9):4449–4452PubMedGoogle Scholar
  171. Sidow A (1996) Gen(om)e duplications in the evolution of early vertebrates. Curr Opin Genet Dev 6:715–722PubMedGoogle Scholar
  172. Siegel N, Hoegg S, Salzburger W, Braasch I, Meyer A (2007) Comparative genomics of ParaHox clusters of teleost fishes: gene cluster breakup and the retention of gene sets following whole genome duplications. BMC Genomics 8:312PubMedGoogle Scholar
  173. Skrabanek L, Wolfe KH (1998) Eukaryote genome duplication—where’s the evidence? Curr Opin Genet Dev 8:694–700PubMedGoogle Scholar
  174. Small KS, Brudno M, Hill MM, Sidow A (2007) A haplome alignment and reference sequence of the highly polymorphic Ciona savignyi genome. Genome Biol 8(3):R41PubMedGoogle Scholar
  175. Soltis DE, Albert VA, Leebens-Mack J, Bell CD, Paterson AH, Zheng C, Sankoff D, Depamphilis CW, Wall PK, Soltis PS (2009) Polyploidy and angiosperm diversification. Am J Bot 96(1):336–348PubMedGoogle Scholar
  176. Soltis DE, Soltis PS (1999) Polyploidy: recurrent formation and genome evolution. Trends Ecol Evol 14(9):348–352PubMedGoogle Scholar
  177. Somorjai I, Bertrand S, Camasses A, Haguenauer A, Escriva H (2008) Evidence for stasis and not genetic piracy in developmental expression patterns of Branchiostoma lanceolatum and Branchiostoma floridae, two amphioxus species that have evolved independently over the course of 200 Myr. Dev Genes Evol 218(11–12):703–713PubMedGoogle Scholar
  178. Spring J (1997) Vertebrate evolution by interspecific hybridization—are we polyploid? Fed Eur Biol Soc Lett 400:2–8Google Scholar
  179. Stadler PF, Fried C, Prohaska SJ, Bailey WJ, Misof BY, Ruddle FH, Wagner GP (2004) Evidence for independent Hox gene duplications in the hagfish lineage: a PCR-based gene inventory of Eptatretus stoutii. Mol Phylogenet Evol 32(3):686–694PubMedGoogle Scholar
  180. Storchova Z, Pellman D (2004) From polyploidy to aneuploidy, genome instability and cancer. Nat Rev Mol Cell Biol 5(1):45–54PubMedGoogle Scholar
  181. Takio Y, Pasqualetti M, Kuraku S, Hirano S, Rijli FM, Kuratani S (2004) Evolutionary biology: lamprey Hox genes and the evolution of jaws. Nature 429(6989):1–262Google Scholar
  182. Taylor JS, Raes J (2004) Duplication and divergence: the evolution of new genes and old ideas. Annu Rev Genet 38:615–643PubMedGoogle Scholar
  183. Taylor JS, van de Peer Y, Meyer M (2001) Genome duplication, divergent resolution and speciation. Trends Genet 17:299–301PubMedGoogle Scholar
  184. Thornburg BG, Gotea V, Makalowski W (2006) Transposable elements as a significant source of transcription regulating signals. Gene 365:104–110PubMedGoogle Scholar
  185. van de Lagemaat LN, Landry JR, Mager DL, Medstrand P (2003) Transposable elements in mammals promote regulatory variation and diversification of genes with specialized functions. Trends Genet 19(10):530–536PubMedGoogle Scholar
  186. Van de Peer Y, Maere S, Meyer A (2009) The evolutionary significance of ancient genome duplications. Nat Rev Genet 10(10):725–732PubMedGoogle Scholar
  187. Venkatesh B, Kirkness EF, Loh YH, Halpern AL, Lee AP, Johnson J, Dandona N, Viswanathan LD, Tay A, Venter JC, Strausberg RL, Brenner S (2007) Survey sequencing and comparative analysis of the elephant shark (Callorhinchus milii) genome. PLoS Biol 5(4):e101PubMedGoogle Scholar
  188. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA et al (2001) The sequence of the human genome. Science 291(5507):1304–1351PubMedGoogle Scholar
  189. Vienne A, Shiina T, Abi-Rached L, Danchin E, Vitiello V, Cartault F, Inoko H, Pontarotti P (2003) Evolution of the proto-MHC ancestral region: more evidence for the plesiomorphic organisation of human chromosome 9q34 region. Immunogenetics 55(7):429–436PubMedGoogle Scholar
  190. Wada H, Okuyama M, Satoh N, Zhang S (2006) Molecular evolution of fibrillar collagen in chordates, with implications for the evolution of vertebrate skeletons and chordate phylogeny. Evol Dev 8(4):370–377PubMedGoogle Scholar
  191. Werth CR, Windham MD (1991) A model for divergent, allopatric speciation of polypoid pteridophytes resulting from silencing of duplicate-gene expression. Am Nat 137:515–526Google Scholar
  192. Weston JA (1970) The migration and differentiation of neural crest cells. Adv Morphog 8:41–114PubMedGoogle Scholar
  193. Wolfe K (2000) Robustness—it’s not where you think it is. Nat Genet 25(1):3–4PubMedGoogle Scholar
  194. Wolfe KH (2001) Yesterday’s polyploids and the mystery of diploidization. Nat Rev Genet 2(5):333–341PubMedGoogle Scholar
  195. Wolfe KH, Shields DC (1997) Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387(6634):708–713PubMedGoogle Scholar
  196. Wotton KR, Shimeld SM (2006) Comparative genomics of vertebrate Fox cluster loci. BMC Genomics 7:271PubMedGoogle Scholar
  197. Yu JK, Meulemans D, McKeown SJ, Bronner-Fraser M (2008) Insights from the amphioxus genome on the origin of vertebrate neural crest. Genome Res 18(7):1127–1132PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Departament de Genètica, Facultat de BiologiaUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations