ACTL ∩ LTL Synthesis
Conference paper
- 4 Citations
- 3.1k Downloads
Abstract
We study the synthesis problem for specifications of the common fragment of ACTL (computation tree logic with only universal path quantification) and LTL (linear-time temporal logic). Key to this setting is a novel construction for translating properties from LTL to very-weak automata, whenever possible. Such automata are structurally simple and thus amenable to optimizations as well as symbolic implementations.
Based on this novel construction, we describe a synthesis approach that inherits the efficiency of generalized reactivity(1) synthesis [27], but is significantly richer in terms of expressivity.
Keywords
Synthesis Problem Winning Strategy Decision Sequence Computation Tree Logic Common Fragment
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Download
to read the full conference paper text
References
- 1.Bloem, R., Chatterjee, K., Greimel, K., Henzinger, T.A., Jobstmann, B.: Robustness in the Presence of Liveness. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 410–424. Springer, Heidelberg (2010)CrossRefGoogle Scholar
- 2.Bloem, R., Galler, S.J., Jobstmann, B., Piterman, N., Pnueli, A., Weiglhofer, M.: Interactive presentation: Automatic hardware synthesis from specifications: a case study. In: Lauwereins, R., Madsen, J. (eds.) DATE, pp. 1188–1193. ACM (2007)Google Scholar
- 3.Bloem, R., Galler, S.J., Jobstmann, B., Piterman, N., Pnueli, A., Weiglhofer, M.: Specify, compile, run: Hardware from PSL. Electr. Notes Theor. Comput. Sci. 190(4), 3–16 (2007)CrossRefGoogle Scholar
- 4.Bojańczyk, M.: The Common Fragment of ACTL and LTL. In: Amadio, R.M. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 172–185. Springer, Heidelberg (2008)CrossRefGoogle Scholar
- 5.Browne, A., Clarke, E.M., Jha, S., Long, D.E., Marrero, W.R.: An improved algorithm for the evaluation of fixpoint expressions. Theor. Comput. Sci. 178(1-2), 237–255 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
- 6.Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model checking: 1020 states and beyond. Inf. Comput. 98(2), 142–170 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
- 7.Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., Sebastiani, R., Tacchella, A.: NuSMV 2: An OpenSource Tool for Symbolic Model Checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 359–364. Springer, Heidelberg (2002)CrossRefGoogle Scholar
- 8.de Alfaro, L., Faella, M.: An Accelerated Algorithm for 3-Color Parity Games with an Application to Timed Games. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 108–120. Springer, Heidelberg (2007)CrossRefGoogle Scholar
- 9.Ehlers, R.: Minimising Deterministic Büchi Automata Precisely Using SAT Solving. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 326–332. Springer, Heidelberg (2010)CrossRefGoogle Scholar
- 10.Ehlers, R.: Symbolic Bounded Synthesis. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 365–379. Springer, Heidelberg (2010)CrossRefGoogle Scholar
- 11.Ehlers, R.: Experimental aspects of synthesis. In: Reich, J., Finkbeiner, B. (eds.) iWIGP. EPTCS, vol. 50, pp. 1–16 (2011)Google Scholar
- 12.Ehlers, R.: Generalized Rabin(1) Synthesis with Applications to Robust System Synthesis. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 101–115. Springer, Heidelberg (2011)CrossRefGoogle Scholar
- 13.Ehlers, R.: Unbeast: Symbolic Bounded Synthesis. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 272–275. Springer, Heidelberg (2011)CrossRefGoogle Scholar
- 14.Emerson, E.A., Jutla, C.S.: Tree automata, mu-calculus and determinacy (extended abstract). In: FOCS, pp. 368–377. IEEE Computer Society (1991)Google Scholar
- 15.Etessami, K., Wilke, T., Schuller, R.A.: Fair Simulation Relations, Parity Games, and State Space Reduction for Büchi Automata. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 694–707. Springer, Heidelberg (2001)CrossRefGoogle Scholar
- 16.Filiot, E., Jin, N., Raskin, J.-F.: An Antichain Algorithm for LTL Realizability. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 263–277. Springer, Heidelberg (2009)CrossRefGoogle Scholar
- 17.Filiot, E., Jin, N., Raskin, J.-F.: Compositional Algorithms for LTL Synthesis. In: Bouajjani, A., Chin, W.-N. (eds.) ATVA 2010. LNCS, vol. 6252, pp. 112–127. Springer, Heidelberg (2010)CrossRefGoogle Scholar
- 18.Gastin, P., Oddoux, D.: Fast LTL to Büchi Automata Translation. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 53–65. Springer, Heidelberg (2001)CrossRefGoogle Scholar
- 19.Hashiguchi, K.: Representation theorems on regular languages. J. Comput. Syst. Sci. 27(1), 101–115 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
- 20.Janin, D., Lenzi, G.: On the relationship between monadic and weak monadic second order logic on arbitrary trees, with applications to the mu-calculus. Fundam. Inform. 61(3-4), 247–265 (2004)MathSciNetzbMATHGoogle Scholar
- 21.Jobstmann, B., Galler, S., Weiglhofer, M., Bloem, R.: Anzu: A Tool for Property Synthesis. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 258–262. Springer, Heidelberg (2007)CrossRefGoogle Scholar
- 22.Jurdziński, M.: Small Progress Measures for Solving Parity Games. In: Reichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 290–301. Springer, Heidelberg (2000)CrossRefGoogle Scholar
- 23.Klein, J., Baier, C.: Experiments with deterministic ω-automata for formulas of linear temporal logic. Theor. Comput. Sci. 363(2), 182–195 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
- 24.Kukula, J.H., Shiple, T.R.: Building Circuits from Relations. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 113–123. Springer, Heidelberg (2000)CrossRefGoogle Scholar
- 25.Maidl, M.: The common fragment of CTL and LTL. In: FOCS, pp. 643–652 (2000)Google Scholar
- 26.McNaughton, R.: Infinite games played on finite graphs. Ann. Pure Appl. Logic 65(2), 149–184 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
- 27.Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of Reactive(1) Designs. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 364–380. Springer, Heidelberg (2006)CrossRefGoogle Scholar
- 28.Sohail, S., Somenzi, F.: Safety first: A two-stage algorithm for LTL games. In: FMCAD, pp. 77–84. IEEE (2009)Google Scholar
- 29.Somenzi, F.: CUDD: CU decision diagram package, release 2.4.2 (2009)Google Scholar
Copyright information
© Springer-Verlag Berlin Heidelberg 2012