Bma: Visual Tool for Modeling and Analyzing Biological Networks

  • David Benque
  • Sam Bourton
  • Caitlin Cockerton
  • Byron Cook
  • Jasmin Fisher
  • Samin Ishtiaq
  • Nir Piterman
  • Alex Taylor
  • Moshe Y. Vardi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7358)

Abstract

BioModel Analyzer (bma ) is a tool for modeling and analyzing biological networks. Designed with a lightweight graphical user interface, the tool facilitates usage for biologists with no previous knowledge in programming or formal methods. The current implementation analyzes systems to establish stabilization. The results of the analysis—whether they be proofs or counterexamples—are represented visually. This paper describes the approach to modeling used in bma and also notes soon-to-be-released extensions to the tool.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amir-Kroll, H., Sadot, A., Cohen, I., Harel, D.: GemCell: A generic platform for modeling multi-cellular biological systems. TCS 391(3) (2008)Google Scholar
  2. 2.
    Beyer, A., Thomason, P., Li, X., Scott, J., Fisher, J.: Mechanistic insights into metabolic disturbance during type-2 diabetes and obesity using qualitative networks. TCSB 12 (2010)Google Scholar
  3. 3.
    Cook, B., Fisher, J., Krepska, E., Piterman, N.: Proving Stabilization of Biological Systems. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 134–149. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Danos, D., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Rule-based modelling and model perturbation. TCSB 11 (2009)Google Scholar
  5. 5.
    Efroni, S., Harel, D., Cohen, I.R.: Toward rigorous comprehension of biological complexity: modeling, execution, and visualization of thymic T-cell maturation. Genome Res. 13(11) (2003)Google Scholar
  6. 6.
    Errampalli, D.D., Priami, C., Quaglia, P.: A formal language for computational systems biology. Omics 8(4) (2004)Google Scholar
  7. 7.
    Fisher, J., Piterman, N., Hajnal, A., Henzinger, T.: Predictive modeling of signaling crosstalk during c. elegans development. PLoS Comp. Bio. 3(5) (2007)Google Scholar
  8. 8.
    Ghosh, R., Tiwari, A., Tomlin, C.: Automated Symbolic Reachability Analysis; with Application to Delta-Notch Signaling Automata. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623, pp. 233–248. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Heath, J., Kwiatkowska, M., Norman, G., Parker, D., Tymchyshyn, O.: Probabilistic Model Checking of Complex Biological Pathways. In: Priami, C. (ed.) CMSB 2006. LNCS (LNBI), vol. 4210, pp. 32–47. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Hucka, M., Finney, A., Sauro, H., Bolouri, H., Doyle, J., Kitano, H.: The systems biology markup language (SBML). Bioinfo. 19(4), 524–531 (2003)CrossRefGoogle Scholar
  11. 11.
    Klerkx, E., Alarcón, P., Waters, K., Reinke, V., Sternberg, P., Askjaer, P.: Protein kinase vrk-1 regulates cell invasion and egl-17/fgf signaling in C. elegans. Dev. Bio. 335(1) (2009)Google Scholar
  12. 12.
    Kumar, S., Feidler, J.: BioSPICE: A computational infrastructure for integrative biology. OMICS 7(3), 225 (2003)CrossRefGoogle Scholar
  13. 13.
    Li, C., Nagasaki, M., Ueno, K., Miyano, S.: Simulation-based model checking approach to cell fate specification during C. elegans vulval development by hybrid functional petri net with extension. BMC Sys. Bio. 3(42) (2009)Google Scholar
  14. 14.
    Sanchez, L., Thieffry, D.: Segmenting the fly embryo: a logical analysis fo the pair-rule cross-regulatory module. J. of Theo. Bio. 244 (2003)Google Scholar
  15. 15.
    Schaub, M., Henzinger, T., Fisher, J.: Qualitative networks: A symbolic approach to analyze biological signaling networks. BMC Sys. Bio. 1(4) (2007)Google Scholar
  16. 16.
    Sundaram, M.V.: The love-hate relationship between Ras and Notch. Genes Dev. 19(16) (2005)Google Scholar
  17. 17.
    Thomas, R., Thieffry, D., Kaufman, M.: Dynamical behaviour of biological regulatory networks—i. biological role of feedback loops and practical use of the concept of the loop-characteristic state. Bull. of Math. Bio. 55(2) (1995)Google Scholar
  18. 18.
    Wang, D., Cardelli, L., Phillips, A., Piterman, N., Fisher, J.: Computational modeling of the egfr network elucidates control mechanisms regulating signal dynamics. BMC Sys. Bio. 3(1), 118 (2009)CrossRefGoogle Scholar
  19. 19.
    Yoo, A.S., Bais, C., Greenwald, I.: Crosstalk between the EGFR and LIN-12/Notch pathways in C. elegans vulval development. Science 303(5658) (2004)Google Scholar
  20. 20.
    Zotin, A.: The Stable state of organisms in thermodynamic bases of biological processes: Physiological Reactions and Adaptations (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • David Benque
    • 1
  • Sam Bourton
    • 1
  • Caitlin Cockerton
    • 1
  • Byron Cook
    • 1
  • Jasmin Fisher
    • 1
  • Samin Ishtiaq
    • 1
  • Nir Piterman
    • 2
  • Alex Taylor
    • 1
  • Moshe Y. Vardi
    • 3
  1. 1.Microsoft ResearchCambridgeUSA
  2. 2.University of LeicesterUK
  3. 3.Rice UniversityUSA

Personalised recommendations