Delayed Continuous-Time Markov Chains for Genetic Regulatory Circuits

  • Călin C. Guet
  • Ashutosh Gupta
  • Thomas A. Henzinger
  • Maria Mateescu
  • Ali Sezgin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7358)


Continuous-time Markov chains (CTMC) with their rich theory and efficient simulation algorithms have been successfully used in modeling stochastic processes in diverse areas such as computer science, physics, and biology. However, systems that comprise non-instantaneous events cannot be accurately and efficiently modeled with CTMCs. In this paper we define delayed CTMCs, an extension of CTMCs that allows for the specification of a lower bound on the time interval between an event’s initiation and its completion, and we propose an algorithm for the computation of their behavior. Our algorithm effectively decomposes the computation into two stages: a pure CTMC governs event initiations while a deterministic process guarantees lower bounds on event completion times. Furthermore, from the nature of delayed CTMCs, we obtain a parallelized version of our algorithm. We use our formalism to model genetic regulatory circuits (biological systems where delayed events are common) and report on the results of our numerical algorithm as run on a cluster. We compare performance and accuracy of our results with results obtained by using pure CTMCs.


Chemical Master Equation Negative Feedback System Biochemical Reaction Network Transition Rate Matrix Probabilistic Model Check 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bosnacki, D., Edelkamp, S., Sulewski, D., Wijs, A.: Parallel probabilistic model checking on general purpose graphics processors. STTT 13(1), 21–35 (2011)CrossRefGoogle Scholar
  2. 2.
    Ciocchetta, F., Hillston, J.: Bio-pepa: A framework for the modelling and analysis of biological systems. Theor. Comput. Sci. 410(33-34), 3065–3084 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Didier, F., Henzinger, T.A., Mateescu, M., Wolf, V.: Approximation of Event Probabilities in Noisy Cellular Processes. In: Degano, P., Gorrieri, R. (eds.) CMSB 2009. LNCS(LNBI), vol. 5688, pp. 173–188. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Didier, F., Henzinger, T.A., Mateescu, M., Wolf, V.: Sabre: A tool for stochastic analysis of biochemical reaction networks. In: QEST, pp. 193–194 (2010)Google Scholar
  5. 5.
    Duong, H.A., Robles, M.S., Knutti, D., Weitz, C.J.: A Molecular Mechanism for Circadian Clock Negative Feedback. Science 332(6036), 1436–1439 (2011)CrossRefGoogle Scholar
  6. 6.
    Gabriel, E., Fagg, G.E., Bosilca, G., Angskun, T., Dongarra, J.J., Squyres, J.M., Sahay, V., Kambadur, P., Barrett, B., Lumsdaine, A., Castain, R.H., Daniel, D.J., Graham, R.L., Woodall, T.S.: Open MPI: Goals, concept, and design of a next generation MPI implementation. In: Proceedings, 11th European PVM/MPI Users’ Group Meeting, Budapest, Hungary, pp. 97–104 (September 2004)Google Scholar
  7. 7.
    Gillespie, D.T.: A general method for numerically simulating the time evolution of coupled chemical reactions. J. Comput. Phys. 22, 403–434 (1976)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Hahn, E.M., Hermanns, H., Wachter, B., Zhang, L.: INFAMY: An Infinite-State Markov Model Checker. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 641–647. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Joh, R.I., Weitz, J.S.: To lyse or not to lyse: Transient-mediated stochastic fate determination in cells infected by bacteriophages. PLoS Comput. Biol. 7(3), e1002006 (2011)CrossRefGoogle Scholar
  10. 10.
    Kwiatkowska, M.Z., Norman, G., Parker, D.: Prism 2.0: A tool for probabilistic model checking. In: QEST, pp. 322–323 (2004)Google Scholar
  11. 11.
    Maithreye, R., Sarkar, R.R., Parnaik, V.K., Sinha, S.: Delay-induced transient increase and heterogeneity in gene expression in negatively auto-regulated gene circuits. PLoS ONE 3(8), e2972 (2008)Google Scholar
  12. 12.
    Mateescu, M.: Propagation Models for Biochemical Reaction Networks. Phd thesis, EPFL, Switzerland (2011)Google Scholar
  13. 13.
    Mateescu, M., Wolf, V., Didier, F., Henzinger, T.A.: Fast adaptive uniformisation of the chemical master equation. IET Systems Biology 4(6), 441–452 (2010); 3rd q-bio Conference on Cellular Information Processing, St John Coll, Santa Fe, NM (August 05-09, 2009)CrossRefGoogle Scholar
  14. 14.
    Munsky, B., Khammash, M.: The finite state projection algorithm for the solution of the chemical master equation. J. Chem. Phys. 124, 044144 (2006)CrossRefGoogle Scholar
  15. 15.
    Myers, C.: Engineering genetic circuits. Chapman and Hall/CRC mathematical & computational biology series. CRC Press (2009)Google Scholar
  16. 16.
    Oswald, A., Oates, A.: Control of endogenous gene expression timing by introns. Genome Biology (3) (2011)Google Scholar
  17. 17.
    Regev, A., Silverman, W., Shapiro, E.: Representation and simulation of biochemical processes using the pi-calculus process algebra. In: Pacific Symposium on Biocomputing, pp. 459–470 (2001)Google Scholar
  18. 18.
    Andre, S., Ribeiro: Stochastic and delayed stochastic models of gene expression and regulation. Mathematical Biosciences 223(1), 1–11 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Savageau, M.A.: Comparison of classical and autogenous systems of regulation in inducible operons. Nature (1974)Google Scholar
  20. 20.
    Zhang, J., Sosonkina, M., Watson, L.T., Cao, Y.: Parallel solution of the chemical master equation. In: SpringSim (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Călin C. Guet
    • 1
  • Ashutosh Gupta
    • 1
  • Thomas A. Henzinger
    • 1
  • Maria Mateescu
    • 1
  • Ali Sezgin
    • 1
  1. 1.IST AustriaKlosterneuburgAustria

Personalised recommendations