Development of Methods for the Classification of Vegetable Oils According to Their Botanical Origin

Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

The aim of this work was to construct an LDA model able to classify vegetable oils according to their botanical origin using FTIR spectroscopy data. Also, FTIR data treatment by MLR was used to detect and quantify EVOO adulteration with other low cost edible oils. For these purposes, the vegetable oils shown in Table 5.1 were used. The FTIR spectra of these 30 oil samples were then measured. In all cases, at least two spectra were recorded for each sample. As indicated in this table, four samples of each botanical origin were used to construct a training set in the classification studies, while the remaining samples of each category were employed to evaluate the prediction capability of the classification models.

Keywords

Normalization Procedure Amino Acid Profile Prediction Capability Botanical Origin Excellent Resolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Baeten V, Fernández Pierna JA, Dardenne P, Meurens M, García-González DL, Aparicio-Ruiz R (2005) J Agric Food Chem 53:6201CrossRefGoogle Scholar
  2. Commission Regulation (EEC) (1991) No. 2568/91 of 11 July 1991 on the characteristics of olive oil and olive-residue oil and on the relevant methods of analysis. Off J Eur Union L128Google Scholar
  3. Concha-Herrera V, Lerma-García MJ, Herrero-Martínez JM, Simó-Alfonso EF (2010) Food Chem 120:1149. Copyright 2009 Elsevier LtdCrossRefGoogle Scholar
  4. Gimeno-Adelantado JV, Mateo-Castro R, Doménech-Carbó MT, Bosch-Reig F, Doménech-Carbó A, De la Cruz-Cañizares J, Casas-Catalán MJ (2002) Talanta 56:71CrossRefGoogle Scholar
  5. Guillén MD, Cabo N (1998) J Agric Food Chem 46:1788CrossRefGoogle Scholar
  6. Hidalgo FJ, Alaiz M, Zamora R (2001) Anal Chem 73:698CrossRefGoogle Scholar
  7. Lerma-García MJ, Ramis-Ramos G, Herrero-Martínez JM, Simó-Alfonso EF (2007) Rapid Commun Mass Spectrom 21:3751. Copyright 2007 John Wiley & Sons, LtdCrossRefGoogle Scholar
  8. Lerma-García MJ, Ramis-Ramos G, Herrero-Martínez JM, Simó-Alfonso EF (2008) Rapid Commun Mass Spectrom 22:973. Copyright 2008 John Wiley & Sons, LtdCrossRefGoogle Scholar
  9. Lerma-García MJ, Ramis-Ramos G, Herrero-Martínez JM, Gimeno-Adelantado JV, Simó-Alfonso EF (2009) J Chromatogr A 1216:230. Copyright 2008 Elsevier B.VCrossRefGoogle Scholar
  10. Lerma-García MJ, Ramis-Ramos G, Herrero-Martínez JM, Simó-Alfonso EF (2010) Food Chem 118:78. Copyright 2009 Elsevier LtdCrossRefGoogle Scholar
  11. Micó-Tormos A, Collado-Soriano C, Torres-Lapasió JR, Simó-Alfonso E, Ramis-Ramos GJ (2008a) J Chromatogr A 1180:32CrossRefGoogle Scholar
  12. Micó-Tormos A, Simó-Alfonso E, Ramis-Ramos GJ (2008b) J Chromatogr A 1203:47CrossRefGoogle Scholar
  13. Ozen BF, Mauer LJ (2002) J Agric Food Chem 50:3898CrossRefGoogle Scholar
  14. Silverstein RM, Bassler GC, Morrill TC (1981) Spectrometric identification of organic compounds. Wiley, ChichesterGoogle Scholar
  15. Vigli G, Philippidis A, Spyros A, Dais P (2003) J Agric Food Chem 51:5715CrossRefGoogle Scholar
  16. Vlachos N, Skopelitis Y, Psaroudaki M, Konstantinidou V, Chatzilazarou A, Tegou E (2006) Anal Chim Acta 573–574:459CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Analytical ChemistryUniversitat de ValènciaValènciaSpain

Personalised recommendations