Size-Hiding in Private Set Intersection: Existential Results and Constructions

  • Paolo D’Arco
  • María Isabel González Vasco
  • Angel L. Pérez del Pozo
  • Claudio Soriente
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7374)

Abstract

In this paper we focus our attention on private set intersection. We show impossibility and existential results, and we provide some explicit constructions. More precisely, we start by looking at the case in which both parties, client and server, in securely computing the intersection, would like to hide the sizes of their sets of secrets, and we show that:
  • It is impossible to realize an unconditionally secure size-hiding set intersection protocol.

  • In a model where a TTP provides set up information to the two parties and disappears, unconditionally secure size-hiding set intersection is possible.

  • There exist computationally secure size-hiding set intersection protocols.

Then, we provide some explicit constructions for one-sided protocols, where only the client gets the intersection and hides the size of her set of secrets. In the model with the TTP, we design two protocols which are computationally secure under standard assumptions, and two very efficient protocols which are secure in the random oracle model. We close the paper with some remarks and by pointing out several interesting open problems.

Keywords

Trusted Third Party Server Privacy Random Oracle Model Setup Phase Oblivious Transfer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ateniese, G., De Cristofaro, E., Tsudik, G.: (If) Size Matters: Size-Hiding Private Set Intersection. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 156–173. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Bellare, M., Rogaway, P.: The Exact Security of Digital Signatures - How to Sign with RSA and Rabin. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 399–416. Springer, Heidelberg (1996)Google Scholar
  3. 3.
    Carter, J.L., Wegman, M.N.: Universal classes of hash functions. Journal of Computer and System Sciences 18, 143–154 (1979)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Cramer, R.: Introduction to Secure Computation. In: Damgård, I.B. (ed.) Lectures on Data Security. LNCS, vol. 1561, pp. 16–62. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  5. 5.
    Camenisch, J., Kohlweiss, M., Soriente, C.: An Accumulator Based on Bilinear Maps and Efficient Revocation for Anonymous Credentials. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 481–500. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Camenisch, J., Lysyanskaya, A.: A Signature Scheme with Efficient Protocols. In: Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Camenisch, J., Zaverucha, G.M.: Private Intersection of Certified Sets. In: Dingledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 108–127. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    De Cristofaro, E., Tsudik, G.: Practical Private Set Intersection Protocols with Linear Complexity. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 143–159. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Dachman-Soled, D., Malkin, T., Raykova, M., Yung, M.: Efficient Robust Private Set Intersection. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 125–142. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Dachman-Soled, D., Malkin, T., Raykova, M., Yung, M.: Secure Efficient Multiparty Computing of Multivariate Polynomials and Applications. In: Lopez, J., Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 130–146. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Even, S., Goldreich, O., Lempel, A.: A Randomized Protocol for Signing Contracts. Communications of the ACM 28(6), 637–647 (1985)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Frikken, K.: Privacy-Preserving Set Union. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 237–252. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword Search and Oblivious Pseudorandom Functions. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 303–324. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Freedman, M.J., Nissim, K., Pinkas, B.: Efficient Private Matching and Set Intersection. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 1–19. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  15. 15.
    Goldreich, O.: Foundations of Cryptography - Volume II Basic Applications. Cambridge Press (2004)Google Scholar
  16. 16.
    Hazay, C., Lindell, Y.: Efficient Protocols for Set Intersection and Pattern Matching with Security Against Malicious and Covert Adversaries. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 155–175. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Ishai, Y., Prabhakaran, M., Sahai, A.: Founding Cryptography on Oblivious Transfer – Efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591. Springer, Heidelberg (2008)Google Scholar
  18. 18.
    Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way permutations. In: Proc. of the 21st Annual ACM Symposium on Theory of Computing, Seattle, Washington, pp. 44–61 (May 1989)Google Scholar
  19. 19.
    Kissner, L., Song, D.: Privacy-Preserving Set Operations. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005)Google Scholar
  20. 20.
    Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random functions. Journal of the ACM 51(2), 231–262 (2004)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–239. Springer, Heidelberg (1999)Google Scholar
  22. 22.
    Rabin, M.: How to exchange secrets by oblivious transfer, Technical Report TR-81, Aiken Computation Laboratory, Harvard University (1981)Google Scholar
  23. 23.
    Rivest, R.: Unconditionally Secure Commitment and Oblivious Transfer Schemes Using Private Channels and a Trusted Initializer (August 11, 1999) (unpublished manuscript), http://people.csail.mit.edu/rivest/publications.html
  24. 24.
    Stinson, D.R.: Universal hash families and the leftover hash lemma, and applications to cryptography and computing. J. Combin. Math. Combin. Comput. 42, 3–31 (2002)MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Paolo D’Arco
    • 1
  • María Isabel González Vasco
    • 2
  • Angel L. Pérez del Pozo
    • 2
  • Claudio Soriente
    • 3
  1. 1.Dipartimento di InformaticaUniversitá di SalernoFiscianoItaly
  2. 2.Dpto. de Matemática AplicadaUniv. Rey Juan CarlosMadridSpain
  3. 3.Institute of Information SecurityETH ZurichSwitzerland

Personalised recommendations