Improved Fixed-Base Comb Method for Fast Scalar Multiplication

  • Nashwa A. F. Mohamed
  • Mohsin H. A. Hashim
  • Michael Hutter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7374)

Abstract

Computing elliptic-curve scalar multiplication is the most time consuming operation in any elliptic-curve cryptosystem. In the last decades, it has been shown that pre-computations of elliptic-curve points improve the performance of scalar multiplication especially in cases where the elliptic-curve point P is fixed. In this paper, we present an improved fixed-base comb method for scalar multiplication. In contrast to existing comb methods such as proposed by Lim and Lee or Tsaur and Chou, we make use of a width-ω non-adjacent form representation and restrict the number of rows of the comb to be greater or equal ω. The proposed method shows a significant reduction in the number of required elliptic-curve point addition operation. The computational complexity is reduced by 33 to 38,% compared to Tsaur and Chou method even for devices that have limited resources. Furthermore, we propose a constant-time variation of the method to thwart simple-power analysis attacks.

Keywords

Elliptic-curve cryptosystem scalar multiplication Lim-Lee method Tsaur-Chou method non-adjacent form width-ω NAF 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Booth, A.D.: A signed binary multiplication technique. Q. J. Mech. Applied Math., 236–240 (1951)Google Scholar
  2. 2.
    Bosma, W.: Signed bits and fast exponentiation. Jornal de Théorie des Nombers de Bordeaux 13, 27–41 (2001)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Brauer, A.: On addition chains. Bull. Amer. Math. Soc. 45, 736–739 (1939)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Brickell, E.F., Gordon, D.M., McCurley, K.S., Wilson, D.B.: Fast Exponentiation with Precomputation (Extended Abstract). In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 200–207. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  5. 5.
    Cohen, H., Frey, G., Avanzi, R., Doche, C., Lange, T., Nguyen, K., Vercauteren, F.: Handbook of elliptic and hyperelliptic curve cryptography. Taylor and Francis Group, LLC (2006)MATHGoogle Scholar
  6. 6.
    Coron, J.-S.: Resistance against Differential Power Analysis for Elliptic Curve Cryptosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 292–302. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  7. 7.
    Feng, M., Zhu, B.B., Xu, M., Li, S.: Efficient comb elliptic curve multiplication methods resistant to power analysis. IACR Cryptology ePrint Archive, 2005:222 (2005)Google Scholar
  8. 8.
    Gordan, D.M.: A survey of fast exponentiation methods. Journal of Algorithms 27, 129–146 (1998)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Hankerson, D., Menezes, A., Vanstone, S.: Guide to elliptic curve cryptography. Springer, New York (2004)MATHGoogle Scholar
  10. 10.
    Hedabou, M., Pinel, P., Bénéteau, L.: A comb method to render ecc resistant against side channel attacks. Paper submitted only to the Cryptology ePrint Archive. hedabou@insa-toulouse.fr 12754 (received, December 2, 2004)Google Scholar
  11. 11.
    Hedabou, M., Pinel, P., Bénéteau, L.: Countermeasures for Preventing Comb Method Against SCA Attacks. In: Deng, R.H., Bao, F., Pang, H., Zhou, J. (eds.) ISPEC 2005. LNCS, vol. 3439, pp. 85–96. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Joye, M., Yen, S.-M.: The Montgomery Powering Ladder. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 291–302. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Koblitz, N.: Elliptic curve cryptosystems. Mathematics of Computation 48, 203–220 (1987)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996)Google Scholar
  15. 15.
    Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)Google Scholar
  16. 16.
    Lim, C.H., Lee, P.J.: More Flexible Exponentiation with Precomputation. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 95–107. Springer, Heidelberg (1994)Google Scholar
  17. 17.
    Joye, M., Tunstall, M.: Exponent Recoding and Regular Exponentiation Algorithms. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 334–349. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  18. 18.
    Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks – Revealing the Secrets of Smart Cards. Springer (2007) ISBN 978-0-387-30857-9Google Scholar
  19. 19.
    Miller, V.S.: Use of Elliptic Curves in Cryptography. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)Google Scholar
  20. 20.
    Montgomery, P.L.: Speeding the pollard and elliptic curve methods of factorization. Mathematics of Computation 48, 243–264 (1987)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Morain, F., Olivos, J.: Speeding up the computations on an elliptic curve using addition-subtraction chains. Theor. Inform. Appli. 24, 531–543 (1989)MathSciNetGoogle Scholar
  22. 22.
    Reitwiesner, G.W.: Binary arithmetic. Advances in Computers 1, 231–308 (1960)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Sakai, Y., Sakurai, K.: Speeding up elliptic scalar multiplication using multidoubling. IEICE Transactions Fundamentals E85-A(5), 1075–1083 (2002)Google Scholar
  24. 24.
    Sakai, Y., Sakurai, K.: A New Attack with Side Channel Leakage During Exponent Recoding Computations. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 298–311. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  25. 25.
    Silverman, J.H.: The arithmetic of elliptic curves, vol. 106. Springer, Berlin (1986)MATHGoogle Scholar
  26. 26.
    Solinas, J.A.: Effiecient arithmetic on koblitz curves. Designs, Codes and Cryptography 19, 195–249 (2000)MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Thurber, E.G.: On addition chains l(mn) ≤ l(n) − b and lower bounds for c(r). Duke Mathematical Journal 40, 907–913 (1973)MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Tsaur, W.-J., Chou, C.-H.: Efficient algorithm for speeding up the computations of elliptic curve cryptosystem. Applied Mathematics and Computation 168, 1045–1064 (2005)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Nashwa A. F. Mohamed
    • 1
  • Mohsin H. A. Hashim
    • 1
  • Michael Hutter
    • 2
  1. 1.Faculty of Mathematical SciencesUniversity of KhartoumKhartoumSudan
  2. 2.Institute for Applied Information Processing and CommunicationsTU GrazGrazAustria

Personalised recommendations