Extended Security Arguments for Signature Schemes

  • Sidi Mohamed El Yousfi Alaoui
  • Özgür Dagdelen
  • Pascal Véron
  • David Galindo
  • Pierre-Louis Cayrel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7374)

Abstract

The well-known forking lemma by Pointcheval and Stern has been used to prove the security of the so-called generic signature schemes. These signature schemes are obtained via the Fiat-Shamir transform from three-pass identification schemes. A number of five-pass identification protocols have been proposed in the last few years. Extending the forking lemma and the Fiat-Shamir transform would allow to obtain new signature schemes since, unfortunately, these newly proposed schemes fall outside the original framework. In this paper, we provide an extension of the forking lemma in order to assess the security of what we call n-generic signature schemes. These include signature schemes that are derived from certain (2n + 1)-pass identification schemes. We thus obtain a generic methodology for proving the security of a number of signature schemes derived from recently published five-pass identification protocols, and potentially for (2n + 1)-pass identification schemes to come.

Keywords

signature schemes forking lemma identification schemes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdalla, M., An, J.H., Bellare, M., Namprempre, C.: From Identification to Signatures via the Fiat-Shamir Transform: Minimizing Assumptions for Security and Forward-Security. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 418–433. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Aguilar Melchor, C., Gaborit, P., Schrek, J.: A new zero-knowledge code based identification scheme with reduced communication. CoRR, abs/1111.1644 (2011)Google Scholar
  3. 3.
    Cayrel, P.-L., Lindner, R., Rückert, M., Silva, R.: Improved Zero-Knowledge Identification with Lattices. In: Heng, S.-H., Kurosawa, K. (eds.) ProvSec 2010. LNCS, vol. 6402, pp. 1–17. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Cayrel, P.-L., Véron, P., El Yousfi Alaoui, S.M.: A Zero-Knowledge Identification Scheme Based on the q-ary Syndrome Decoding Problem. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 171–186. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Fiat, A., Shamir, A.: How to Prove Yourself: Practical Solutions to Identification and Signature Problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)Google Scholar
  6. 6.
    El Gamal, T.: A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 10–18. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  7. 7.
    Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof-systems. In: STOC 1985, pp. 291–304. ACM (1985)Google Scholar
  8. 8.
    Lampe, R., Patarin, J.: Analysis of some natural variants of the PKP algorithm. Cryptology ePrint Archive, Report 2011/686 (2011), http://eprint.iacr.org/
  9. 9.
    Ohta, K., Okamoto, T.: On Concrete Security Treatment of Signatures Derived from Identification. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 354–369. Springer, Heidelberg (1998)Google Scholar
  10. 10.
    Pointcheval, D.: A New Identification Scheme Based on the Perceptrons Problem. In: Guillou, L.C., Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp. 319–328. Springer, Heidelberg (1995)Google Scholar
  11. 11.
    Pointcheval, D., Poupard, G.: A new NP-complete problem and public-key identification. Des. Codes Cryptography 28, 5–31 (2003)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Pointcheval, D., Stern, J.: Security Proofs for Signature Schemes. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 387–398. Springer, Heidelberg (1996)Google Scholar
  13. 13.
    Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signatures. J. Cryptology 13(3), 361–396 (2000)MATHCrossRefGoogle Scholar
  14. 14.
    Sakumoto, K., Shirai, T., Hiwatari, H.: Public-Key Identification Schemes Based on Multivariate Quadratic Polynomials. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 706–723. Springer, Heidelberg (2011)Google Scholar
  15. 15.
    Shamir, A.: An Efficient Identification Scheme Based on Permuted Kernels (Extended Abstract). In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 606–609. Springer, Heidelberg (1990)Google Scholar
  16. 16.
    Silva, R., Cayrel, P.-L., Lindner, R.: Zero-knowledge identification based on lattices with low communication costs. XI Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais 8, 95–107 (2011)Google Scholar
  17. 17.
    Stern, J.: A New Identification Scheme Based on Syndrome Decoding. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 13–21. Springer, Heidelberg (1994)Google Scholar
  18. 18.
    Stern, J.: Designing Identification Schemes with Keys of Short Size. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 164–173. Springer, Heidelberg (1994)Google Scholar
  19. 19.
    Yao, A.C., Zhao, Y.: Digital signatures from challenge-divided sigma-protocols. Cryptology ePrint Archive, Report 2012/001 (2012), http://eprint.iacr.org/

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Sidi Mohamed El Yousfi Alaoui
    • 1
  • Özgür Dagdelen
    • 1
  • Pascal Véron
    • 2
  • David Galindo
    • 3
  • Pierre-Louis Cayrel
    • 4
  1. 1.Darmstadt University of TechnologyGermany
  2. 2.IML/IMATH Université du Sud Toulon-VarFrance
  3. 3.University of LuxembourgLuxembourg
  4. 4.Laboratoire Hubert Curien Université de Saint-EtienneFrance

Personalised recommendations