Compact Implementation and Performance Evaluation of Block Ciphers in ATtiny Devices

  • Thomas Eisenbarth
  • Zheng Gong
  • Tim Güneysu
  • Stefan Heyse
  • Sebastiaan Indesteege
  • Stéphanie Kerckhof
  • François Koeune
  • Tomislav Nad
  • Thomas Plos
  • Francesco Regazzoni
  • François-Xavier Standaert
  • Loic van Oldeneel tot Oldenzeel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7374)

Abstract

The design of lightweight block ciphers has been a very active research topic over the last years. However, the lack of comparative source codes generally makes it hard to evaluate the extent to which implementations of different ciphers actually reach their low-cost goals on various platforms. This paper reports on an initiative aiming to relax this issue. First, we provide implementations of 12 block ciphers on an ATMEL AVR ATtiny45 8-bit microcontroller, and make the corresponding source code available on a web page. All implementations are made public under an open-source license. Common interfaces and design goals are followed by all designers to achieve comparable implementation results. Second, we evaluate performance figures of our implementations with respect to different metrics, including energy-consumption measurements and show our improvements compared to existing implementations.

Keywords

Lightweight Block Cipher AVR ATtiny Implementation Open Source 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    3rd Generation Partnership Project. Technical Specification Group Services and System Aspects, 3G Security, Specification of the 3GPP Confidentiality and Integrity Algorithms, Document 2: KASUMI Specification (Release 10) (2011)Google Scholar
  2. 2.
    ATMEL. AVR 8-bit Microcontrollers, http://www.atmel.com/products/avr/
  3. 3.
    Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An Ultra-Lightweight Block Cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN — A Family of Small and Efficient Hardware-Oriented Block Ciphers. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Daemen, J., Peeters, M., Assche, G.V., Rijmen, V.: Nessie Proposal: NOEKEON (2000), http://gro.noekeon.org/Noekeon-spec.pdf
  6. 6.
    Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption Standard. Springer (2002)Google Scholar
  7. 7.
    de Meulenaer, G., Gosset, F., Standaert, F.-X., Pereira, O.: On the Energy Cost of Communication and Cryptography in Wireless Sensor Networks. In: WiMob, pp. 580–585. IEEE (2008)Google Scholar
  8. 8.
    Eisenbarth, T., Gong, Z., Güneysu, T., Heyse, S., Indesteege, S., Kerckhof, S., Koeune, F., Nad, T., Plos, T., Regazzoni, F., Standaert, F.-X., van Oldeneel tot Oldenzeel, L.: Implementations of Low-Cost Block Ciphers in Atmel AVR Devices (2011), http://perso.uclouvain.be/fstandae/lightweight_ciphers/
  9. 9.
    Eisenbarth, T., Kumar, S.S., Paar, C., Poschmann, A., Uhsadel, L.: A Survey of Lightweight-Cryptography Implementations. IEEE Design & Test of Computers 24(6), 522–533 (2007)CrossRefGoogle Scholar
  10. 10.
    Gaj, K., Homsirikamol, E., Rogawski, M.: Fair and Comprehensive Methodology for Comparing Hardware Performance of Fourteen Round Two SHA-3 Candidates Using FPGAs. In: Mangard, Standaert (eds.) [16], pp. 264–278Google Scholar
  11. 11.
    Gong, Z., Nikova, S., Law, Y.W.: KLEIN: A New Family of Lightweight Block Ciphers. In: Juels, A., Paar, C. (eds.) RFIDSec 2011. LNCS, vol. 7055, pp. 1–18. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Hong, D., Sung, J., Hong, S., Lim, J., Lee, S., Koo, B.-S., Lee, C., Chang, D., Lee, J., Jeong, K., Kim, H., Kim, J., Chee, S.: HIGHT: A New Block Cipher Suitable for Low-Resource Device. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 46–59. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Lai, X., Massey, J.L.: A Proposal for a New Block Encryption Standard. In: Damgård, I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 389–404. Springer, Heidelberg (1991)Google Scholar
  14. 14.
    Leander, G., Paar, C., Poschmann, A., Schramm, K.: New Lightweight DES Variants. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 196–210. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Lim, C.H., Korkishko, T.: mCrypton – A Lightweight Block Cipher for Security of Low-Cost RFID Tags and Sensors. In: Song, J., Kwon, T., Yung, M. (eds.) WISA 2005. LNCS, vol. 3786, pp. 243–258. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Mangard, S., Standaert, F.-X. (eds.): CHES 2010. LNCS, vol. 6225. Springer, Heidelberg (2010)MATHGoogle Scholar
  17. 17.
    Matsui, M.: New Block Encryption Algorithm MISTY. In: Biham, E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 54–68. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  18. 18.
    Poettering, B.: RijndaelFurious AES-128 Implementation for AVR Devices (2007), http://point-at-infinity.org/avraes/
  19. 19.
    Standaert, F.-X., Piret, G., Gershenfeld, N., Quisquater, J.-J.: SEA: A Scalable Encryption Algorithm for Small Embedded Applications. In: Domingo-Ferrer, J., Posegga, J., Schreckling, D. (eds.) CARDIS 2006. LNCS, vol. 3928, pp. 222–236. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. 20.
    Wenzel-Benner, C., Gräf, J.: XBX: eXternal Benchmarking eXtension for the SUPERCOP Crypto Benchmarking Framework. In: Mangard, Standaert (eds.) [16], pp. 294–305Google Scholar
  21. 21.
    Wheeler, D.J., Needham, R.M.: TEA, a Tiny Encryption Algorithm. In: Preneel, B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 363–366. Springer, Heidelberg (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Thomas Eisenbarth
    • 1
  • Zheng Gong
    • 2
  • Tim Güneysu
    • 3
  • Stefan Heyse
    • 3
  • Sebastiaan Indesteege
    • 4
    • 5
  • Stéphanie Kerckhof
    • 6
  • François Koeune
    • 6
  • Tomislav Nad
    • 7
  • Thomas Plos
    • 7
  • Francesco Regazzoni
    • 6
    • 8
  • François-Xavier Standaert
    • 6
  • Loic van Oldeneel tot Oldenzeel
    • 6
  1. 1.Department of Mathematical SciencesFlorida Atlantic UniversityUSA
  2. 2.School of Computer ScienceSouth China Normal UniversityChina
  3. 3.Horst Görtz Institute for IT SecurityRuhr-UniversitätBochumGermany
  4. 4.Department of Electrical Engineering ESAT/COSICKULeuvenBelgium
  5. 5.Interdisciplinary Institute for BroadBand Technology (IBBT)GhentBelgium
  6. 6.UCL Crypto GroupUniversité catholique de LouvainBelgium
  7. 7.Institute for Applied Information Processing and Communications (IAIK)Graz University of TechnologyAustria
  8. 8.ALaRI InstituteUniversity of LuganoSwitzerland

Personalised recommendations