Two Finger Grasping Simulation with Cutaneous and Kinesthetic Force Feedback

  • Claudio Pacchierotti
  • Francesco Chinello
  • Monica Malvezzi
  • Leonardo Meli
  • Domenico Prattichizzo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7282)

Abstract

This paper presents an experiment of two finger grasping. The task considered is the peg-in-hole and the simulated force feedback is cutaneous or kinesthetic. The kinesthetic feedback is provided by a commercial haptic device while the cutaneous one is provided by a new haptic display proposed in this work, which allows to render at the fingertip a wide range of contact forces. The device consists of a mobile surface, which interacts with the fingertip, actuated by three wires directly connected to the motors placed on the grounded structure of the display. This work summarizes the design of the proposed display and presents the main relationships which describe its kinematics and dynamics. Results showed that cutaneous feedback exhibits improved performances when compared to visual feedback only.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hayward, V., Astley, O., Cruz-Hernandez, M., Grant, D., Robles-De-La-Torre, G.: Haptic interfaces and devices. Sensor Review 24, 16–29 (2004)CrossRefGoogle Scholar
  2. 2.
    Watanabe, T., Fukui, S.: A method for controlling tactile sensation of surface roughness using ultrasonic vibration. In: Proc. of IEEE International Conference on Robotics and Automation, vol. 1, pp. 1134–1139 (1995)Google Scholar
  3. 3.
    Takasaki, M., Nara, T., Tachi, S., Higuchi, T.: A tactile display using surface acoustic wave. In: Proc. of 9th IEEE International Workshop on Robot and Human Interactive Communication, pp. 364–367 (2000)Google Scholar
  4. 4.
    Ikei, Y., Wakamatsu, K., Fukuda, S.: Texture presentation by vibratory tactile display-image based presentation of a tactile texture. In: Proc. of Virtual Reality Annual International Symposium, pp. 199–205 (1997)Google Scholar
  5. 5.
    Yang, G., Kyung, K., Srinivasan, M., Kwon, D.: Quantitative tactile display device with pin-array type tactile feedback and thermal feedback. In: Proc. of 2006 IEEE International Conference on Robotics and Automation, pp. 3917–3922 (2006)Google Scholar
  6. 6.
    Yang, T., Kim, S., Kim, C., Kwon, D., Book, W.: Development of a miniature pin-array tactile module using elastic and electromagnetic force for mobile devices. In: Proc. of Eurohaptics and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pp. 13–17 (2009)Google Scholar
  7. 7.
    Yamamoto, A., Ishii, T., Higuchi, T.: Electrostatic tactile display for presenting surface roughness sensation. In: Proc. of IEEE International Conference on Industrial Technology, vol. 2, pp. 680–684 (2003)Google Scholar
  8. 8.
    Minamizawa, K., Kajimoto, H., Kawakami, N., Tachi, S.: A wearable haptic display to present the gravity sensation-preliminary observations and device design. In: Proc. of Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pp. 133–138 (2007)Google Scholar
  9. 9.
    Minamizawa, K., Fukamachi, S., Kajimoto, H., Kawakami, N., Tachi, S.: Gravity grabber: wearable haptic display to present virtual mass sensation. In: ACM SIGGRAPH 2007 Emerging Technologies, p. 8–es (2007)Google Scholar
  10. 10.
    Prattichizzo, D., Pacchierotti, C., Cenci, S., Minamizawa, K., Rosati, G.: Using a Fingertip Tactile Device to Substitute Kinesthetic Feedback in Haptic Interaction. In: Kappers, A.M.L., van Erp, J.B.F., Bergmann Tiest, W.M., van der Helm, F.C.T. (eds.) EuroHaptics 2010, Part I. LNCS, vol. 6191, pp. 125–130. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Prattichizzo, D., Chinello, F., Pacchierotti, C., Minamizawa, K.: Remotouch: A system for remote touch experience. In: Proc. of IEEE International Workshop on Robot and Human Interactive Communication, pp. 676–679 (2010)Google Scholar
  12. 12.
    Prattichizzo, D., Pacchierotti, C., Rosati, G.: Cutaneous force feedback as a sensory subtraction technique in haptics. In: IEEE Transactions on Haptics (2012)Google Scholar
  13. 13.
    Bau, O., Poupyrev, I., Israr, A., Harrison, C.: Teslatouch: electrovibration for touch surfaces. In: Proc. of the 23nd Annual ACM Symposium on User Interface Software and Technology, pp. 283–292 (2010)Google Scholar
  14. 14.
    Kuchenbecker, K., Gewirtz, J., McMahan, W., Standish, D., Martin, P., Bohren, J., Mendoza, P., Lee, D.: VerroTouch: High-Frequency Acceleration Feedback for Telerobotic Surgery. In: Kappers, A.M.L., van Erp, J.B.F., Bergmann Tiest, W.M., van der Helm, F.C.T. (eds.) EuroHaptics 2010, Part I. LNCS, vol. 6191, pp. 189–196. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Chinello, F., Malvezzi, M., Pacchierotti, C., Prattichizzo, D.: A three DoFs wearable tactile display for exploration and manipulation of virtual objects. In: Proc. of IEEE Haptic Symposium (2012)Google Scholar
  16. 16.
    Kuchenbecker, K., Ferguson, D., Kutzer, M., Moses, M., Okamura, A.: The touch thimble: Providing fingertip contact feedback during point-force haptic interaction. In: Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2008, pp. 239–246 (2008)Google Scholar
  17. 17.
    HiTech Inc.: Hs-55 microlite servo motor data sheet (2012)Google Scholar
  18. 18.
    Serina, E., Mockensturm, E., Mote Jr., C., Rempel, D.: A structural model of the forced compression of the fingertip pulp. Journal of Biomechanics 31, 639–646 (1998)CrossRefGoogle Scholar
  19. 19.
    Srinivasan, M., Dankekar, K.: An investigation of the mechanics of tactile sense using two dimensional models of the primate fingertip. Transactions of the ASME, Journal of Biomechanical Engineering 118, 48–55 (1996)CrossRefGoogle Scholar
  20. 20.
    Cook, T., Alexander, H., Cohen, M.: Experimental method for determining the 2-dimensional mechanical properties of living human skin. Medical and Biological Engineering and Computing 15, 381–390 (1977)CrossRefGoogle Scholar
  21. 21.
    Serina, E., Mote, C., et al.: Force response of the fingertip pulp to repeated compression–effects of loading rate, loading angle and anthropometry. Journal of Biomechanics 30, 1035–1040 (1997)CrossRefGoogle Scholar
  22. 22.
    Nakazawa, N., Ikeura, R., Inooka, H.: Characteristics of human fingertips in the shearing direction. Biological Cybernetics 82, 207–214 (2000)CrossRefGoogle Scholar
  23. 23.
    Wang, Q., Hayward, V.: In vivo biomechanics of the fingerpad skin under local tangential traction. Journal of Biomechanics 40, 851–860 (2007)CrossRefGoogle Scholar
  24. 24.
    Park, K., Kim, B., Hirai, S.: Development of a soft-fingertip and its modeling based on force distribution. In: Proc. of IEEE International Conference on Robotics and Automation, vol. 3, pp. 3169–3174 (2003)Google Scholar
  25. 25.
    Conti, F., Morris, D., Barbagli, F., Sewell, C.: Chai 3d (2006), http://www.chai3d.org
  26. 26.
    Massimino, M., Sheridan, T.: Sensory substitution for force feedback in teleoperation. Presence: Teleoperators and Virtual Environments 2, 344–352 (1993)Google Scholar
  27. 27.
    Hill, J.: Two measures of performance in a peg-in-hole manipulation task with force feedback. In: Proc. of 13 th Annual Conference on Manual Control, pp. 301–309 (1977)Google Scholar
  28. 28.
    Prattichizzo, D., Trinkle, J.: Grasping, ch. 28. Springer (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Claudio Pacchierotti
    • 1
    • 2
  • Francesco Chinello
    • 2
  • Monica Malvezzi
    • 1
  • Leonardo Meli
    • 1
  • Domenico Prattichizzo
    • 1
    • 2
  1. 1.Department of Information EngineeringUniversity of SienaSienaItaly
  2. 2.Department of Advanced RoboticsIstituto Italiano di TecnologiaGenovaItaly

Personalised recommendations