Rendering Stiffness with a Prototype Haptic Glove Actuated by an Integrated Piezoelectric Motor

  • Pontus Olsson
  • Stefan Johansson
  • Fredrik Nysjö
  • Ingrid Carlbom
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7282)


Bi-directional haptic devices incorporate both sensors and actuators. While small and compact sensors are readily available, actuators in haptic interfaces require a significant volume to produce needed forces. With many actuated degrees of freedom, the mass and size of the actuators become a problem in devices such as haptic gloves. Piezo-technology offers the possibility of compact actuators which can be controlled with high accuracy. We describe a prototype admittance-type haptic device for the hand with a compact integrated piezoelectric motor. The current implementation provides one degree of freedom, but it could be extended with more motors for additional degrees of freedom. We demonstrate both the accuracy with which the device can reproduce force-displacement responses of non-linear elastic material stiffness and the device’s fast and stable response to an applied load.


Haptics Haptic Glove Piezoelectric Motor Actuator 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sensable Technologies, Inc.,
  2. 2.
    CyberGlove Systems,
  3. 3.
    Bouzit, M., Burdea, G., Popescu, G., Boian, R.: The Rutgers Master II-New Design Force-Feedback Glove. IEEE/ASME Trans. Mechatronics 7(2), 256–263 (2002)CrossRefGoogle Scholar
  4. 4.
    Endo, T., Kawasaki, H., Mouri, T., Ishigure, Y., Shimomura, H., Matsumura, M., Koketsu, K.: Five-Fingered Haptic Interface Robot: HIRO III. IEEE Trans. Haptics 4(1), 14–27 (2011) CrossRefGoogle Scholar
  5. 5.
    Blake, J., Gurocak, H.B.: Haptic Glove with MR Brakes for Virtual Reality. IEEE/ASME Transactions on Mechatronics 14(5) (October 2009)Google Scholar
  6. 6.
    Laitinen, P., Mawnpaa, J.: Enabling Mobile Haptic Design: Piezoelectric Actuator Technology Properties in Hand Held Devices. In: Proc. 2006 IEEE International Workshop on Haptic Audio Visual Environments and their Applications, pp. 40–43 (2006)Google Scholar
  7. 7.
    Kyung, K.U., Kim, S.C., Kwon, D.S.: Texture Display Mouse: Vibrotactile Pattern and Roughness Display. IEEE/ASME Trans. Mechatronics 12(3), 356–360 (2007)CrossRefGoogle Scholar
  8. 8.
    Chubb, E.C., Colgate, J.E., Peshkin, M.A.: ShiverPad: A Device Capable of Controlling Shear Force on a Bare Finger. In: Proc. World Haptics Conference 2009, pp. 18–23 (2009)Google Scholar
  9. 9.
    Santello, M., Flanders, M., Soechting, J.F.: Postural Hand Synergies for Tool Use. J. Neurosci. 18, 10105–10115 (1998)Google Scholar
  10. 10.
    PiezoMotor AB,
  11. 11.
    NANOS-Instruments GmbH,
  12. 12.
    Tekscan, Inc.,
  13. 13.
    Kern, T.A.: Engineering Haptic Devices. Springer Publishing (May 2009)Google Scholar
  14. 14.
    Carignan, C., Cleary, K.: Closed-Loop Force Control for Haptic Simulation of Virtual Environments. Haptics-e, The Electronic Journal of Haptics Research 2(2) (February 2000),
  15. 15.
    Van der Linde, R.Q., Lammerste, P., Frederiksen, E., Ruiter, B.: The HapticMaster, a New High-Performance Haptic Interface. In: Proc. EuroHaptics, Edinburgh, pp. 1–5 (2002)Google Scholar
  16. 16.
    Luxx Ultra-Tech, Inc.,
  17. 17.
    NaturalPoint, Inc.,

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Pontus Olsson
    • 1
  • Stefan Johansson
    • 2
  • Fredrik Nysjö
    • 1
  • Ingrid Carlbom
    • 1
  1. 1.Centre for Image AnalysisUppsala UniversitySweden
  2. 2.Dept. of Engineering SciencesUppsala UniversitySweden

Personalised recommendations