Spectral Subtraction of Robot Motion Noise for Improved Event Detection in Tactile Acceleration Signals

  • William McMahan
  • Katherine J. Kuchenbecker
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7282)

Abstract

New robots for teleoperation and autonomous manipulation are increasingly being equipped with high-bandwidth accelerometers for measuring the transient vibrational cues that occur during contact with objects. Unfortunately, the robot’s own internal mechanisms often generate significant high-frequency accelerations, which we term ego-vibrations. This paper presents an approach to characterizing and removing these signals from acceleration measurements. We adapt the audio processing technique of spectral subtraction over short time windows to remove the noise that is estimated to occur at the robot’s present joint velocities. Implementation for the wrist roll and gripper joints on a Willow Garage PR2 robot demonstrates that spectral subtraction significantly increases signal-to-noise ratio, which should improve vibrotactile event detection in both teleoperation and autonomous robotics.

Keywords

haptic feedback for teleoperation vibrations tactile accelerations noise suppression 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Willow Garage, Overview of the PR2 (2011) http://www.willowgarage.com/pages/pr2/overview (accessed on February 14, 2011)
  2. 2.
    Allen, J.: Short term spectral analysis, synthesis, and modification by discrete fourier transform. IEEE Transactions on Acoustics, Speech and Signal Processing 25(3), 235–238 (1977)MATHCrossRefGoogle Scholar
  3. 3.
    Bell, J., Bolanowski, S., Holmes, M.H.: The structure and function of Pacinian corpuscles: A review. Progress in Neurobiology 42(1), 79–128 (1994)CrossRefGoogle Scholar
  4. 4.
    Benesty, J., Chen, J., Huand, Y., Cohen, I.: Noise Reduction in Speech Processing, Springer Topics in Signal Processing, vol. 2. Springer (2009)Google Scholar
  5. 5.
    Blackemore, S.J., Wolpert, D., Frith, C.: Why can’t you tickle yourself? Neuroreport 11, R11–R16 (2000)Google Scholar
  6. 6.
    Boll, S.: Suppression of acoustic noise in speech using spectral subtraction. IEEE Transactions on Acoustics, Speech and Signal Processing 27(2), 113–120 (1979)CrossRefGoogle Scholar
  7. 7.
    Dennerlein, J.T., Millman, P.A., Howe, R.D.: Vibrotactile feedback for industrial telemanipulators. In: Proc. of the Sixth Annual Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, ASME International Mechanical Engineering Congress and Exposition, pp. 107–113 (November 1997)Google Scholar
  8. 8.
    Ephraim, Y., Malah, D.: Speech enhancement using a minimum-mean square error short-time spectral amplitude estimator. IEEE Transactions on Acoustics, Speech and Signal Processing 32(6), 1109–1121 (1984)CrossRefGoogle Scholar
  9. 9.
    Howe, R.D., Popp, N., Akella, P., Kao, I., Cutkosky, M.R.: Grasping, manipulation, and control with tactile sensing. In: Proc. of the IEEE International Conference on Robotics and Automation, vol. 2, pp. 1258–1263 (1990)Google Scholar
  10. 10.
    Ince, G., Nakadai, K., Rodemann, T., Hasegawa, Y., Tsujino, H., Imura, J.I.: Ego noise suppression of a robot using template subtraction. In: Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 199–204 (October 2009)Google Scholar
  11. 11.
    Ince, G., Nakadai, K., Rodemann, T., Hasegawa, Y., Tsujino, H., Imura, J.i.: A hybrid framework for ego noise cancellation of a robot. In: Proc. of the IEEE International Conference on Robotics and Automation, pp. 3623–3628 (May 2010)Google Scholar
  12. 12.
    Johansson, R.S., Flanagan, J.R.: Coding and use of tactile signals from the fingertips in object manipulation tasks. Nature Reviews Neuroscience 10, 345–359 (2009)CrossRefGoogle Scholar
  13. 13.
    Klatzky, R.L., Lederman, S.J.: Perceiving object properties through a rigid link. In: Lin, M., Otaduy, M. (eds.) Haptic Rendering: Algorithms and Applications, ch. 1, pp. 7–19. A. K. Peters (2008)Google Scholar
  14. 14.
    Kontarinis, D.A., Howe, R.D.: Tactile display of vibratory information in teleoperation and virtual environments. Presence: Teleoperators and Virtual Environments 4(4), 387–402 (1995)Google Scholar
  15. 15.
    Kuchenbecker, K.J., Gewirtz, J., McMahan, W., Standish, D., Martin, P., Bohren, J., Mendoza, P.J., Lee, D.I.: VerroTouch: High-Frequency Acceleration Feedback for Telerobotic Surgery. In: Kappers, A.M.L., van Erp, J.B.F., Bergmann Tiest, W.M., van der Helm, F.C.T. (eds.) EuroHaptics 2010, Part I. LNCS, vol. 6191, pp. 189–196. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Landin, N., Romano, J.M., McMahan, W., Kuchenbecker, K.J.: Dimensional Reduction of High-Frequency Accelerations for Haptic Rendering. In: Kappers, A.M.L., van Erp, J.B.F., Bergmann Tiest, W.M., van der Helm, F.C.T. (eds.) EuroHaptics 2010, Part II. LNCS, vol. 6192, pp. 79–86. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Massie, T.H., Salisbury, J.K.: The PHANToM haptic interface: A device for probing virtual objects. In: Proceedings of the ASME Winter Annual Meeting, Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, Chicago, Illinois (1994)Google Scholar
  18. 18.
    McMahan, W., Gewirtz, J., Standish, D., Martin, P., Kunkel, J.A., Lilavois, M., Wedmid, A., Lee, D.I., Kuchenbecker, K.J.: Tool contact acceleration feedback for telerobotic surgery. IEEE Transactions on Haptics 4(3), 210–220 (2011)CrossRefGoogle Scholar
  19. 19.
    McMahan, W., Kuchenbecker, K.J.: Haptic display of realistic tool contact via dynamically compensated control of a dedicated actuator. In: Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3171–3177 (October 2009)Google Scholar
  20. 20.
    McMahan, W., Romano, J.M., Rahuman, A.M.A., Kuchenbecker, K.J.: High frequency acceleration feedback significantly increases the realism of haptically rendered textured surfaces. In: Proc. of the IEEE Haptics Symposium, pp. 141–148 (March 2010)Google Scholar
  21. 21.
    Okamoto, S., Konyo, M., Saga, S., Tadokoro, S.: Detectability and perceptual consequences of delayed feedback in a vibrotactile texture display. IEEE Transactions on Haptics 2(2), 73–84 (2009)CrossRefGoogle Scholar
  22. 22.
    Romano, J.M., Hsiao, K., Niemeyer, G., Chitta, S., Kuchenbecker, K.J.: Human-inspired robotic grasp control with tactile sensing. IEEE Transactions on Robotics (99), 1–13 (2011)Google Scholar
  23. 23.
    Vaseghi, S.V.: Advanced Digital Signal Processing and Noise Reduction. John Wiley & Sons Ltd. (2000)Google Scholar
  24. 24.
    Vogels, I.M.L.C.: Detection of temporal delays in visual-haptic interfaces. Human Factors: The Journal of the Human Factors and Ergonomics Society 46(1), 118–134 (2004)CrossRefGoogle Scholar
  25. 25.
    Waldron, K.J., Enedah, C., Gladstone, H.: Stiffness and texture perception for teledermatology. Studies In Health Technology and Informatics 111, 579–585 (2005)Google Scholar
  26. 26.
    Yao, H.Y., Hayward, V., Ellis, R.E.: A tactile enhancement instrument for minimally invasive surgery. Computer-Aided Surgery 10(4), 233–239 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • William McMahan
    • 1
  • Katherine J. Kuchenbecker
    • 1
  1. 1.Haptics Group, GRASP Laboratory, Department of Mechanical Engineering and Applied MechanicsUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations