Advertisement

Mechanical Impedance as Coupling Parameter of Force and Deflection Perception: Experimental Evaluation

  • Christian Hatzfeld
  • Roland Werthschützky
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7282)

Abstract

This paper investigates the mechanical impedance of a human subject as a potential coupling parameter between force and deflection perception. Measurements of the force perception threshold of 27 subjects at the fingertip and the mechanical impedance of 29 subject at the same location in the frequency range of 5 ... 1000 Hz were conducted. From the results, a model for the impedance was fitted and thresholds for the perception of deflections were calculated. These were compared to already published thresholds from other research groups. The results show a good fit of both data sets, therefore confirming the mechanical impedance as coupling parameter between these two dimensions of perception.

Keywords

force perception deflection perception mechanical impedance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abbink, D.A., van der Helm, F.C.: Force Perception Measurements at the Foot. In: IEEE Conf. on Systems, Man and Cybernetics (2004)Google Scholar
  2. 2.
    Buus, S.: Psychophysical methods and other factors that affect the outcome of psychoacoustic measurements Genetics and the Function of the Auditory System. In: Proceedings of the 19th Danavox Symposium (2002)Google Scholar
  3. 3.
    Gescheider, G.A., Bolanowski, S.J., Hardick, K.R.: The frequency selectivity of information-processing channels in the tactile sensory system. Somatosensory and Motor Research 18 (2001)Google Scholar
  4. 4.
    Gescheider, G.A., Bolanowski, S.J., Pope, J.V., Verillo, R.T.: A four-channel analysis of the tactile sensitivity of the fingertip: frequency selectivity, spatial summation and temporal summation. Somatosensory and Motor Research (2002)Google Scholar
  5. 5.
    Gescheider, G.A.: Psychophysics. Lawrence Erlbaum Associates (1997)Google Scholar
  6. 6.
    Gescheider, G.A., Wright, J.H., Verillo, R.T.: Information-Processing Channels in the Tactile Sensory System. Psychology Press (2009)Google Scholar
  7. 7.
    Hajian, A.Z., Howe, R.D.: Indentification of the Mechanical Impedance at the Human Finger Tip. Journal of Biomechanical Engineering 119 (1997)Google Scholar
  8. 8.
    Hatzfeld, C., Kern, T.A., Werthschützky, R.: Design and Evaluation of a Measuring System for Human Force Perception Parameters. Sensors and Actuators A: Physical 162 (2010)Google Scholar
  9. 9.
    Hatzfeld, C., Werthschützky, R.: Vibrotactile Force Perception Thresholds at the Fingertip. In: EHC (2010)Google Scholar
  10. 10.
    Hinterseer, P., Hirche, S., Chaudhuri, S., Steinbach, E., Buss, M.: Perception-Based Data Reduction and Transmission of Haptic Data in Telepresence and Teleaction Systems. IEEE Transactions on Signal Processing 56 (2008)Google Scholar
  11. 11.
    Israr, A., Choi, S., Tan, H.Z.: Detection Threshold and Mechanical Impedance of the Hand in a Pen-Hold Posture. In: Proceedings of the 2006 IEE/RSJ International Conference on Intelligent Robots and Systems (2006)Google Scholar
  12. 12.
    Israr, A., Choi, S., Tan, H.Z.: Mechanical Impedance of the Hand Holding a Spherical Tool at Threshold and Superthreshold Stimulation Levels. In: WHC (2007)Google Scholar
  13. 13.
    Jones, L.A.: Matching forces: constant errors and differential thresholds. Perception 18 (1989)Google Scholar
  14. 14.
    Kassner, S.: Transparenz von Teleoperationssystemen - Anwendung der Netzwerktheorie auf mehrdimensionale, parallel-kinematische haptische Bedienelemente. Jahrestagung der Deutschen Gesellschaft fr Akustik, DAGA (2012)Google Scholar
  15. 15.
    Kern, T.A., Werthschtzky, R.: Studies of the Mechanical Impedance of the Index Finger in Multiple Dimensions. In: EHC (2008)Google Scholar
  16. 16.
    Kern, T.A. (ed.): Engineering Haptic Devices. Springer (2009)Google Scholar
  17. 17.
    Leek, M.R.: Adaptive procedures in psychophysical research. Perception & Psychophysics 63 (2001)Google Scholar
  18. 18.
    Lenk, A., Ballas, R.G., Werthschtzky, R., Pfeifer, G.: Electromechanical Systems in Microtechnology and Mechatronics. In: Electrical, Mechanical and Acoustic Networks, their Interactions and Applications. Springer (2011)Google Scholar
  19. 19.
    Levitt, H.: Transformed Up-Down Methods in Psychoacoustics. JASA 49 (1971)Google Scholar
  20. 20.
    McMahan, W., Gewirtz, J., Standish, D., Martin, P., Kunkel, J., Lilavois, M., Wedmid, A., Lee, D., Kuchenbecker, K.: Tool Contact Acceleration Feedback for Telerobotic Surgery. IEEE Transactions on Haptics (2011)Google Scholar
  21. 21.
    Meiss, T., Budelmann, C., Kern, T.A., Sindlinger, S., Minamisava, C., Werthschützky, R.: Intravascular Palpation and Haptic Feedback during Angioplasty. In: World Haptics Conference (2009)Google Scholar
  22. 22.
    Pang, X., Tan, H., Durlach, N.: Manual Resolution of Length, Force and Compliance. In: ASME DSC Advances in Robotics, vol. 42 (1992)Google Scholar
  23. 23.
    Prescher, D., Weber, G., Spindler, M.: A tactile windowing system for blind users. In: ACM SIGACCESS (2010)Google Scholar
  24. 24.
    Tan, H.Z., Srinivasan, M.A., Eberman, B., Cheng, B.: Human Factors for the design of force-reflecting haptic interfaces. In: ASME DSC (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Christian Hatzfeld
    • 1
  • Roland Werthschützky
    • 1
  1. 1.Institute for Electromechanical DesignTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations