Computers in Orthodontic Research

Chapter

Abstract

Computers are ubiquitous in orthodontic research, from inception to publication. This chapter presents basic principles of computer applications in orthodontics, placing emphasis on measurement of diagnostic records. Computer-aided cephalometric analysis is probably the most widely used application, so a thorough understanding of scanners and digital radiographic machines is essential. Issues related to measurement error are examined, and methods to minimise it, through multiple digitisation and image enhancement, are presented. Three-dimensional records, including facial scans, cone-beam computed tomography images and digital casts, require increased computer power but also a significant learning curve. Basic principles and accuracy of these methods are discussed, as well as radiation concerns related to ever-increasing CBCT use. This chapter concludes with simulation of orthodontic archwires, for calculation of force systems, and facial soft tissue simulation, which may provide realistic predictions of orthognathic surgery treatments.

Keywords

Colour Depth Warped Image Laser Stripe Cephalometric Radiograph Cephalometric Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Battagel JM (1993) A comparative assessment of cephalometric errors. Eur J Orthod 15:305–314PubMedCrossRefGoogle Scholar
  2. 2.
    Baumrind S, Frantz R (1971) The reliability of head film measurements: 1, landmark identification. Am J Orthod 60:111–127PubMedCrossRefGoogle Scholar
  3. 3.
    Cohen AM (1984) Uncertainty in cephalometrics. Br J Orthod 11:44–48PubMedGoogle Scholar
  4. 4.
    Houston WJB (1983) The analysis of errors in orthodontic measurements. Am J Orthod 83:382–390PubMedCrossRefGoogle Scholar
  5. 5.
    Houston WJB, Maher RE, McElroy D, Sherriff M (1986) Sources of error in measurements from cephalometric radiographs. Eur J Orthod 8:149–151PubMedCrossRefGoogle Scholar
  6. 6.
    Sandler PJ (1988) Reproducibility of cephalometric measurements. Br J Orthod 15:105–110PubMedGoogle Scholar
  7. 7.
    Trpkova B, Major P, Prasad N, Nebbe B (1997) Cephalometric landmarks identification and reproducibility: a meta analysis. Am J Orthod Dentofacial Orthop 112:165–170PubMedCrossRefGoogle Scholar
  8. 8.
    Damstra J, Huddleston Slater JJ, Fourie Z, Ren Y (2010) Reliability and the smallest detectable differences of lateral cephalometric measurements. Am J Orthod Dentofacial Orthop 138:546.e1–546.e8CrossRefGoogle Scholar
  9. 9.
    Chan CK, Tng TH, Hagg U, Cooke MS (1994) Effects of cephalometric landmark validity on incisor angulation. Am J Orthod Dentofacial Orthop 106:487–495PubMedCrossRefGoogle Scholar
  10. 10.
    Tng TT, Chan TC, Hagg U, Cooke MS (1994) Validity of cephalometric landmarks. An experimental study on human skulls. Eur J Orthod 16:110–120PubMedCrossRefGoogle Scholar
  11. 11.
    Eriksen E, Solow B (1990) Linearity of cephalometric digitizers. Eur J Orthod 13:337–342CrossRefGoogle Scholar
  12. 12.
    Tourne LPM (1996) Accuracy of a commercially available digitizer: a new method for assessment of errors in linearity. Angle Orthod 66:433–440PubMedGoogle Scholar
  13. 13.
    Gonzalez RC, Woods RE (2002) Digital image processing. Prentice Hall Inc., New JerseyGoogle Scholar
  14. 14.
    Halazonetis DJ (2004) What features should I look for in a scanner? Am J Orthod Dentofacial Orthop 125:117–118PubMedCrossRefGoogle Scholar
  15. 15.
    Halazonetis DJ (2004) At what resolution should I scan cephalometric radiographs? Am J Orthod Dentofacial Orthop 125:118–119PubMedCrossRefGoogle Scholar
  16. 16.
    Ongkosuwito EM, Katsaros C, van’t Hof MA, Bodegom JC, Kuijpers-Jagtman AM (2002) The reproducibility of cephalometric measurements: a comparison of analogue and digital methods. Eur J Orthod 24:655–665PubMedCrossRefGoogle Scholar
  17. 17.
    Held CL, Ferguson DJ, Gallo MW (2001) Cephalometric digitization: a determination of the minimum scanner settings necessary for precise landmark identification. Am J Orthod Dentofacial Orthop 119:472–481PubMedCrossRefGoogle Scholar
  18. 18.
    Halazonetis DJ (2005) What do 8-bit and 12-bit grayscale mean and which should I use when scanning? Am J Orthod Dentofacial Orthop 127:387–388PubMedCrossRefGoogle Scholar
  19. 19.
    Halazonetis DJ (2005) How can I eliminate noise in the dark areas when scanning radiographs or slides? Am J Orthod Dentofacial Orthop 127:83–84PubMedCrossRefGoogle Scholar
  20. 20.
    Chadwick JW, Prentice RN, Major PW, Lam EW (2009) Image distortion and magnification of 3 digital CCD cephalometric systems. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 107:105–112PubMedCrossRefGoogle Scholar
  21. 21.
    Uysal T, Baysal A, Yagci A (2009) Evaluation of speed, repeatability, and reproducibility of digital radiography with manual versus computer-assisted cephalometric analyses. Eur J Orthod 31:523–528PubMedCrossRefGoogle Scholar
  22. 22.
    Tsorovas G, Karsten AL (2010) A comparison of hand-tracing and cephalometric analysis computer programs with and without advanced features–accuracy and time demands. Eur J Orthod 32:721–728PubMedCrossRefGoogle Scholar
  23. 23.
    Baumrind S, Miller DM (1980) Computer-aided head film analysis: the University of California San Francisco method. Am J Orthod 78:41–65PubMedCrossRefGoogle Scholar
  24. 24.
    Macrì V, Wenzel A (1993) Reliability of landmark recording on film and digital lateral cephalograms. Eur J Orthod 15:137–148PubMedCrossRefGoogle Scholar
  25. 25.
    Parker JR (1997) Algorithms for image processing and computer vision. Wiley, New YorkGoogle Scholar
  26. 26.
    Kazandjian S, Kiliaridis S, Mavropoulos A (2006) Validity and reliability of a new edge-based computerized method for identification of cephalometric landmarks. Angle Orthod 76:619–624PubMedGoogle Scholar
  27. 27.
    Dibbets JMH, Nolte K (2002) Effect of magnification on lateral cephalometric studies. Am J Orthod Dentofacial Orthop 122:196–201PubMedCrossRefGoogle Scholar
  28. 28.
    Björk A, Skieller V (1983) Normal and abnormal growth of the mandible. A synthesis of longitudinal cephalometric implant studies over a period of 25 years. Eur J Orthod 5:1–46PubMedCrossRefGoogle Scholar
  29. 29.
    Dryden IL, Mardia KV (1998) Statistical shape analysis. Wiley, ChichesterGoogle Scholar
  30. 30.
    Lele S (1999) Invariance and morphometrics: a critical appraisal of statistical techniques for landmark data. In: Chaplain MAJ, Singh GD, McLachlan JC (eds) On growth and form. Spatio-temporal pattern formation in Biology. Wiley, New YorkGoogle Scholar
  31. 31.
    O’Higgins P (1999) Ontogeny and phylogeny: some morphometric approaches to skeletal growth and evolution. In: Chaplain MAJ, Singh GD, McLachlan JC (eds) On growth and form. Spatio-temporal pattern formation in Biology. Wiley, New YorkGoogle Scholar
  32. 32.
    Richtsmeier JT, Cheverud JM, Lele S (1992) Advances in anthropological morphometrics. Annu Rev Anthropol 21:283–305CrossRefGoogle Scholar
  33. 33.
    Cakirer B, Dean D, Palomo JM, Hans MG (2002) Orthognathic surgery outcome analysis: 3-dimensional landmark geometric morphometrics. Int J Adult Orthodon Orthognath Surg 17:116–132PubMedGoogle Scholar
  34. 34.
    Singh GD, McNamara JA Jr, Lozanoff S (1998) Craniofacial heterogeneity of prepu-bertal Korean and European-American subjects with class III malocclusions: procrustes, EDMA, and cephalometric analyses. Int J Adult Orthodon Orthognath Surg 13:227–240PubMedGoogle Scholar
  35. 35.
    Singh GD, Clark WJ (2001) Localization of mandibular changes in patients with class II division 1 malocclusions treated with twin-block appliances: finite element scaling analysis. Am J Orthod Dentofacial Orthop 119:419–425PubMedCrossRefGoogle Scholar
  36. 36.
    Halazonetis DJ (2004) Morphometrics for cephalometric diagnosis. Am J Orthod Dentofacial Orthop 125:571–581PubMedCrossRefGoogle Scholar
  37. 37.
    Chatzigianni A, Halazonetis DJ (2009) Geometric morphometric evaluation of cervical vertebrae shape and its relationship to skeletal maturation. Am J Orthod Dentofacial Orthop 136:481.e1–481.e9CrossRefGoogle Scholar
  38. 38.
    Bartzela T, Katsaros C, Rønning E, Rizell S, Semb G, Bronkhorst E, Halazonetis D, Kuijpers-Jagtman AM (2011) A longitudinal three-center study of craniofacial morphology at 6 and 12 years of age in patients with complete bilateral cleft lip and palate. Clin Oral Investig. doi: 10.1007/s00784-011-0615-y
  39. 39.
    Moyers RE, Bookstein FL (1979) The inappropriateness of conventional cephalometrics. Am J Orthod 75:599–617PubMedCrossRefGoogle Scholar
  40. 40.
    Halazonetis DJ (1999) Morphing and warping. Part I. Am J Orthod Dentofacial Orthop 115:466–470PubMedCrossRefGoogle Scholar
  41. 41.
    Halazonetis DJ (1999) Morphing and warping. Part II. Am J Orthod Dentofacial Orthop 115:706–708PubMedCrossRefGoogle Scholar
  42. 42.
    Gomes J, Darsa L, Costa B, Velho L (1999) Warping and morphing of graphical objects. Morgan Kaufmann Publishers Inc., San FranciscoGoogle Scholar
  43. 43.
    Beier T, Neely S (1992) Feature-based image metamorphosis. ACM SIGGRAPH Comput Graph 26:35–42CrossRefGoogle Scholar
  44. 44.
    Ackerman JL, Proffit WR (1995) Communication in orthodontic treatment planning: bioethical and informed consent issues. Angle Orthod 65:253–262PubMedGoogle Scholar
  45. 45.
    Fink B, Grammer K, Thornhill R (2001) Human (Homo sapiens) facial attractiveness in relation to skin texture and color. J Comp Psychol 115:92–99PubMedCrossRefGoogle Scholar
  46. 46.
    Giddon DB, Sconzo R, Kinchen JA, Evans CA (1996) Quantitative comparison of computerized discrete and animated profile preferences. Angle Orthod 66:441–448PubMedGoogle Scholar
  47. 47.
    Halazonetis DJ (2002) Estimated natural head position and facial morphology. Am J Orthod Dentofacial Orthop 121:364–368PubMedCrossRefGoogle Scholar
  48. 48.
    Lemley B (2000) Isn’t she lovely? Discover 21:42–49Google Scholar
  49. 49.
    Perrett DI, Lee KJ, Penton-Voak I, Rowland D, Yoshikawa S, Burt DM, Henzi SP, Castles DL, Akamatsu S (1998) Effects of sexual dimorphism on facial attractiveness. Nature 394:884–887PubMedCrossRefGoogle Scholar
  50. 50.
    Spyropoulos MN, Halazonetis DJ (2001) Significance of the soft-tissue profile on facial esthetics. Am J Orthod Dentofacial Orthop 119:464–471PubMedCrossRefGoogle Scholar
  51. 51.
    Karavaka SM, Halazonetis DJ, Spyropoulos MN (2008) Configuration of facial features influences subjective evaluation of facial type. Am J Orthod Dentofacial Orthop 133:277–282PubMedCrossRefGoogle Scholar
  52. 52.
    Ngan DC, Kharbanda OP, Geenty JP, Darendeliler MA (2003) Comparison of radiation levels from computed tomography and conventional dental radiographs. Aust Orthod J 19:67–75PubMedGoogle Scholar
  53. 53.
    Gijbels F, Sanderink G, Wyatt J, Van Dam J, Nowak B, Jacobs R (2003) Radiation doses of collimated vs non-collimated cephalometric exposures. Dentomaxillofac Radiol 32:128–133PubMedCrossRefGoogle Scholar
  54. 54.
    Ludlow JB, Davies-Ludlow LE, Brooks SL (2003) Dosimetry of two extraoral direct digital imaging devices: NewTom cone beam CT and orthophos plus DS panoramic unit. Dentomaxillofac Radiol 32:229–234PubMedCrossRefGoogle Scholar
  55. 55.
    Mah JK, Danforth RA, Bumann A, Hatcher D (2003) Radiation absorbed in maxillofacial imaging with a new dental computed tomography device. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 96:508–513PubMedCrossRefGoogle Scholar
  56. 56.
    European Commission (2004) Radiation protection 136. European guidelines on radiation protection in dental radiology. Luxembourg: Office for Official Publications of the European Communities. http://ec.europa.eu/energy/nuclear/radioprotection/publication/doc/136_en.pdf. Accessed 20 Jan 2012
  57. 57.
    Hujoel P, Hollender L, Bollen AM, Young JD, McGee M, Grosso A (2008) Head-and-neck organ doses from an episode of orthodontic care. Am J Orthod Dentofacial Orthop 133:210–217PubMedCrossRefGoogle Scholar
  58. 58.
    Pauwels R, Beinsberger J, Collaert B, Theodorakou C, Rogers J, Walker A, Cockmartin L, Bosmans H, Jacobs R, Bogaerts R, Horner K, The SEDENTEXCT Project Consortium (2012) Effective dose range for dental cone beam computed tomography scanners. Eur J Radiol 81:267–271PubMedCrossRefGoogle Scholar
  59. 59.
    Isaacson K, Thom A, Horner K, Whaites E (2008) Guidelines for the use of radiographs in clinical orthodontics. British Orthodontic Society, LondonGoogle Scholar
  60. 60.
    SEDENTEXCT (2011) Radiation protection: cone beam CT for dental and maxillofacial radiology. Evidence based guidelines 2011. http://www.sedentexct.eu/files/guidelines_final.pdf. Accessed 20 Jan 2012
  61. 61.
    Togashi K, Kitaura H, Yonetsu K, Yoshida N, Nakamura T (2002) Three-dimensional cephalometry using helical computer tomography: measurement error caused by head inclination. Angle Orthod 72:513–520PubMedGoogle Scholar
  62. 62.
    Williams FL, Richtsmeier JT (2003) Comparison of mandibular landmarks from computed tomography and 3D digitizer data. Clin Anat 16:494–500PubMedCrossRefGoogle Scholar
  63. 63.
    Ludlow JB, Laster WS, See M, Bailey LJ, Hershey HG (2007) Accuracy of measurements of mandibular anatomy in cone beam computed tomography images. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 103:534–542PubMedCrossRefGoogle Scholar
  64. 64.
    Pinsky HM, Dyda S, Pinsky RW, Misch KA, Sarment DP (2006) Accuracy of three-­dimensional measurements using cone-beam CT. Dentomaxillofac Radiol 35:410–416PubMedCrossRefGoogle Scholar
  65. 65.
    Misch KA, Yi ES, Sarment DP (2006) Accuracy of cone beam computed tomography for periodontal defect measurements. J Periodontol 77:1261–1266PubMedCrossRefGoogle Scholar
  66. 66.
    Marmulla R, Wortche R, Muhling J, Hassfeld S (2005) Geometric accuracy of the NewTom 9000 cone beam CT. Dentomaxillofac Radiol 34:28–31PubMedCrossRefGoogle Scholar
  67. 67.
    Gribel BF, Gribel MN, Frazäo DC, McNamara JA Jr, Manzi FR (2011) Accuracy and reliability of craniometric measurements on lateral cephalometry and 3D measurements on CBCT scans. Angle Orthod 81:26–35PubMedCrossRefGoogle Scholar
  68. 68.
    Berco M, Rigali PH Jr, Miner RM, DeLuca S, Anderson NK, Will LA (2009) Accuracy and reliability of linear cephalometric measurements from cone-beam computed tomography scans of a dry human skull. Am J Orthod Dentofacial Orthop 136:17.e1–17.e9CrossRefGoogle Scholar
  69. 69.
    Lagravère MO, Carey J, Toogood RW, Major PW (2008) Three-dimensional accuracy of measurements made with software on cone-beam computed tomography images. Am J Orthod Dentofacial Orthop 134:112–116PubMedCrossRefGoogle Scholar
  70. 70.
    Baumgaertel S, Palomo JM, Palomo L, Hans MG (2009) Reliability and accuracy of cone-beam computed tomography dental measurements. Am J Orthod Dentofacial Orthop 136:19–25PubMedCrossRefGoogle Scholar
  71. 71.
    Barrett JF, Keat N (2004) Artifacts in CT: recognition and avoidance. Radiographics 24:1679–1691PubMedCrossRefGoogle Scholar
  72. 72.
    Schulze R, Heil U, Gross D, Bruellmann DD, Dranischnikow E, Schwanecke U, Schoemer E (2011) Artefacts in CBCT: a review. Dentomaxillofac Radiol 40:265–273PubMedCrossRefGoogle Scholar
  73. 73.
    Bryant JA, Drage NA, Richmond S (2008) Study of the scan uniformity from an i-CAT cone beam computed tomography dental imaging system. Dentomaxillofac Radiol 37:365–374PubMedCrossRefGoogle Scholar
  74. 74.
    Katsumata A, Hirukawa A, Okumura S, Naitoh M, Fujishita M, Ariji E, Langlais RP (2007) Effects of image artifacts on gray-value density in limited-volume cone-beam computerized tomography. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 104:829–836PubMedCrossRefGoogle Scholar
  75. 75.
    Nackaerts O, Maes F, Yan H, Couto Souza P, Pauwels R, Jacobs R (2011) Analysis of intensity variability in multislice and cone beam computed tomography. Clin Oral Implants Res 22:873–879PubMedCrossRefGoogle Scholar
  76. 76.
    Halazonetis DJ (2009) Commentary. Am J Orthod Dentofacial Orthop 136:25–28CrossRefGoogle Scholar
  77. 77.
    Ballrick JW, Palomo JM, Ruch E, Amberman BD, Hans MG (2008) Image distortion and spatial resolution of a commercially available cone-beam computed tomography machine. Am J Orthod Dentofacial Orthop 134:573–582PubMedCrossRefGoogle Scholar
  78. 78.
    Timock A, Cook V, McDonald T, Leo MC, Crowe J, Benninger B, Covell D (2011) Accuracy and reliability of buccal bone height and thickness measurements from cone-beam computed tomography imaging. Am J Orthod Dentofacial Orthop 140:734–744PubMedCrossRefGoogle Scholar
  79. 79.
    Patcas R, Müller L, Ullrich L, Peltomäki T (2012) Cone-beam computed tomography and the anatomical reality of alveolar bone covering in the lower front. Am J Orthod Dentofacial Orthop 141:41–50PubMedCrossRefGoogle Scholar
  80. 80.
    Leung CC, Palomo L, Griffith R, Hans MG (2010) Accuracy and reliability of cone-beam computed tomography for measuring alveolar bone height and detecting bony dehiscences and fenestrations. Am J Orthod Dentofacial Orthop 137(4 Suppl):S109–S119PubMedCrossRefGoogle Scholar
  81. 81.
    Sun Z, Smith T, Kortam S, Kim DG, Tee BC, Fields H (2011) Effect of bone thickness on alveolar bone-height measurements from cone-beam computed tomography images. Am J Orthod Dentofacial Orthop 139:e117–e127PubMedCrossRefGoogle Scholar
  82. 82.
    Nguyen E, Boychuk D, Orellana M (2011) Accuracy of cone-beam computed tomography in predicting the diameter of unerupted teeth. Am J Orthod Dentofacial Orthop 140:e59–e66PubMedCrossRefGoogle Scholar
  83. 83.
    Ludlow JB, Gubler M, Cevidanes L, Mol A (2009) Precision of cephalometric landmark identification: cone-beam computed tomography vs conventional cephalometric views. Am J Orthod Dentofacial Orthop 136:312.e1–312.e10CrossRefGoogle Scholar
  84. 84.
    Damstra J, Fourie Z, Huddleston Slater JJ, Ren Y (2011) Reliability and the smallest detectable difference of measurements on 3-dimensional cone-beam computed tomography images. Am J Orthod Dentofacial Orthop 140:e107–e114PubMedCrossRefGoogle Scholar
  85. 85.
    Halazonetis DJ (2001) Acquisition of 3-dimensional shapes from images. Am J Orthod Dentofacial Orthop 119:556–560PubMedCrossRefGoogle Scholar
  86. 86.
    Klette R, Schlüns K, Koschan A (1998) Computer vision. Three-dimensional data from images. Springer-Verlag Singapore Pte. Ltd., SingaporeGoogle Scholar
  87. 87.
    Hennessy RJ, Moss JP (2001) Facial growth: separating shape from size. Eur J Orthod 23:275–285PubMedCrossRefGoogle Scholar
  88. 88.
    Ismail SF, Moss JP, Hennessy R (2002) Three-dimensional assessment of the effects of extraction and nonextraction orthodontic treatment on the face. Am J Orthod Dentofacial Orthop 121:244–256PubMedCrossRefGoogle Scholar
  89. 89.
    Moss JP, Linney AD, Grindrod SR, Arridge SR, Clifton JS (1987) Three-dimensional visualization of the face and skull using computerized tomography and laser scanning techniques. Eur J Orthod 9:247–253PubMedGoogle Scholar
  90. 90.
    Moss JP (2000) 2D or not 2D? That is the question. Am J Orthod Dentofacial Orthop 117:580–581PubMedCrossRefGoogle Scholar
  91. 91.
    Marcel TJ (2001) Three-dimensional on-screen virtual models. Am J Orthod Dentofacial Orthop 119:666–668PubMedCrossRefGoogle Scholar
  92. 92.
    Garino F, Garino B (2003) From digital casts to digital occlusal set-up: an enhanced diagnostic tool. World J Orthod 4:162–166Google Scholar
  93. 93.
    Redmond WJ, Redmond MJ, Redmond WR (2004) The OrthoCAD bracket placement solution. Am J Orthod Dentofacial Orthop 125:645–646PubMedCrossRefGoogle Scholar
  94. 94.
    Bell A, Ayoub AF, Siebert P (2003) Assessment of the accuracy of a three-dimensional imaging system for archiving dental study models. J Orthod 30:219–223PubMedCrossRefGoogle Scholar
  95. 95.
    Kuo E, Miller RJ (2003) Automated custom-manufacturing technology in orthodontics. Am J Orthod Dentofacial Orthop 123:578–581PubMedCrossRefGoogle Scholar
  96. 96.
    Kusnoto B, Evans CA (2002) Reliability of a 3D surface laser scanner for orthodontic applications. Am J Orthod Dentofacial Orthop 122:342–348PubMedCrossRefGoogle Scholar
  97. 97.
    Whetten JL, Williamson PC, Heo G, Varnhagen C, Major PW (2006) Variations in orthodontic treatment planning decisions of class II patients between virtual 3-dimensional models and traditional plaster study models. Am J Orthod Dentofacial Orthop 130:485–491PubMedCrossRefGoogle Scholar
  98. 98.
    Tomassetti JJ, Taloumis LJ, Denny JM, Fischer JR Jr (2001) A comparison of 3 computerized Bolton tooth-size analyses with a commonly used method. Angle Orthod 71:351–357PubMedGoogle Scholar
  99. 99.
    Zilberman O, Huggare JAV, Parikakis KA (2003) Evaluation of the validity of tooth size and arch width measurements using conventional and three-dimensional virtual orthodontic models. Angle Orthod 73:301–306PubMedGoogle Scholar
  100. 100.
    Sjögren AP, Lindgren JE, Huggare JA (2010) Orthodontic study cast analysis–reproducibility of recordings and agreement between conventional and 3D virtual measurements. J Digit Imaging 23:482–492PubMedCrossRefGoogle Scholar
  101. 101.
    Santoro M, Galkin S, Teredesai M, Nicolay OF, Cangialosi TJ (2003) Comparison of measurements made on digital and plaster models. Am J Orthod Dentofacial Orthop 124:101–105PubMedCrossRefGoogle Scholar
  102. 102.
    Leifert MF, Leifert MM, Efstratiadis SS, Cangialosi TJ (2009) Comparison of space analysis evaluations with digital models and plaster dental casts. Am J Orthod Dentofacial Orthop 136:16.e1–16.e4CrossRefGoogle Scholar
  103. 103.
    Koch RM, Gross MH, Carls FR, von Bueren DF, Fankhauser G, Parish YIH (1996) Simulating facial surgery using finite element models. In Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, pp 421–428, doi: 10.1145/237170.237281Google Scholar
  104. 104.
    Koch RM, Roth SHM, Gross MH, Zimmermann AP, Sailer HF (2002) A framework for facial surgery simulation. Proceedings of ACM SCCG 2002, pp 33–42, doi: 10.1145/584458.584464Google Scholar
  105. 105.
    Lee Y, Terzopoulos D, Waters K (1995) Realistic facial modeling for animation. In: Computer graphics proceedings, annual conference series. ACM SIGGRAPH, Los Angeles, pp 55–62Google Scholar
  106. 106.
    Meehan M, Teschner M, Girod S (2003) Three-dimensional simulation and prediction of craniofacial surgery. Orthod Craniofac Res 6:102–107PubMedCrossRefGoogle Scholar
  107. 107.
    Parke FI, Waters K (1996) Computer facial animation. A K Peters, Ltd., WellesleyGoogle Scholar
  108. 108.
    Teschner M, Girod S, Girod B (1999) Interactive osteotomy simulation and soft-tissue prediction. Proc Vision, Modeling, Visualization VMV’99, Erlangen, pp 405–412Google Scholar
  109. 109.
    Zhang Y, Prakash EC, Sung E (2002) Constructing a realistic face model of an individual for expression animation. Int J Inf Technol 8:10–25Google Scholar
  110. 110.
    Halazonetis DJ (1996) Computer experiments using a two-dimensional model of tooth support. Am J Orthod Dentofacial Orthop 109:598–606PubMedCrossRefGoogle Scholar
  111. 111.
    Jeon PD, Turley PK, Ting K (2001) Three-dimensional finite element analysis of stress in the periodontal ligament of the maxillary first molar with simulated bone loss. Am J Orthod Dentofacial Orthop 119:498–504PubMedCrossRefGoogle Scholar
  112. 112.
    Kawarizadeh A, Bourauel C, Jäger A (2003) Experimental and numerical determination of initial tooth mobility and material properties of the periodontal ligament in rat molar specimens. Eur J Orthod 25:569–578PubMedCrossRefGoogle Scholar
  113. 113.
    Poppe M, Bourauel C, Jager A (2002) Determination of the elasticity parameters of the human periodontal ligament and the location of the center of resistance of single-rooted teeth a study of autopsy specimens and their conversion into finite element models. J Orofac Orthop 63:358–370PubMedCrossRefGoogle Scholar
  114. 114.
    Rudolph DJ, Willes PMG, Sameshima GT (2001) A finite element model of apical force distribution from orthodontic tooth movement. Angle Orthod 71:127–131PubMedGoogle Scholar
  115. 115.
    Tanne K, Sakuda M, Burstone CJ (1987) Three-dimensional finite element analysis for stress in the periodontal tissue by orthodontic forces. Am J Orthod Dentofacial Orthop 92:499–505PubMedCrossRefGoogle Scholar
  116. 116.
    Toms SR, Eberhardt AW (2003) A nonlinear finite element analysis of the periodontal ligament under orthodontic tooth loading. Am J Orthod Dentofacial Orthop 123:657–665PubMedCrossRefGoogle Scholar
  117. 117.
    Vanderby R Jr, Burstone CJ, Solonche DJ, Ratches JA (1977) Experimentally determined force systems from vertically activated orthodontic loops. Angle Orthod 47:272–279PubMedGoogle Scholar
  118. 118.
    Beer FP, Johnston ER (1981) Mechanics of materials. McGraw-Hill, New YorkGoogle Scholar
  119. 119.
    DeFranco JC, Koenig HA, Burstone CJ (1976) Three-dimensional large displacement analysis of orthodontic appliances. J Biomech 9:793–801PubMedCrossRefGoogle Scholar
  120. 120.
    Halazonetis DJ (1997) Design and test orthodontic loops using your computer. Am J Orthod Dentofacial Orthop 111:346–348PubMedCrossRefGoogle Scholar
  121. 121.
    Halazonetis DJ (1998) Understanding orthodontic loop preactivation. Am J Orthod Dentofacial Orthop 113:237–241PubMedCrossRefGoogle Scholar
  122. 122.
    Koenig HA, Burstone CJ (1974) Analysis of generalized curved beams for orthodontic applications. J Biomech 7:429–435PubMedCrossRefGoogle Scholar
  123. 123.
    Bourauel C, Drescher D, Ebling J, Broome D, Kanarachos A (1997) Superelastic nickel titanium alloy retraction springs–an experimental investigation of force systems. Eur J Orthod 19:491–500PubMedCrossRefGoogle Scholar
  124. 124.
    Chen J, Markham DL, Katona TR (2000) Effects of T-loop geometry on its forces and moments. Angle Orthod 70:48–51PubMedGoogle Scholar
  125. 125.
    Drescher D, Bourauel C, Thier M (1991) Application of the orthodontic measurement and simulation system (OMSS) in orthodontics. Eur J Orthod 13:169–178PubMedCrossRefGoogle Scholar
  126. 126.
    Menghi C, Planert J, Melsen B (1999) 3-D experimental identification of force systems from orthodontic loops activated for first order corrections. Angle Orthod 69:49–57PubMedGoogle Scholar
  127. 127.
    Siatkowski RE (1997) Continuous arch wire closing loop design, optimization, and verification. Part I. Am J Orthod Dentofacial Orthop 112:393–402PubMedCrossRefGoogle Scholar
  128. 128.
    Sifakakis I, Pandis N, Makou M, Eliades T, Bourauel C (2010) A comparative assessment of the forces and moments generated with various maxillary incisor intrusion biomechanics. Eur J Orthod 32:159–164PubMedCrossRefGoogle Scholar
  129. 129.
    Gjessing P (1985) Biomechanical design and clinical evaluation of a new canine-retraction spring. Am J Orthod 87:353–362PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of OrthodonticsSchool of Dentistry, University of AthensKifissiaGreece

Personalised recommendations