Extending MKM Formats at the Statement Level

  • Fulya Horozal
  • Michael Kohlhase
  • Florian Rabe
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7362)


Successful representation and markup languages find a good balance between giving the user freedom of expression, enforcing the fundamental semantic invariants of the modeling framework, and allowing machine support for the underlying semantic structures. MKM formats maintain strong invariants while trying to be foundationally unconstrained, which makes the induced design problem particularly challenging.

In this situation, it is standard practice to define a minimal core language together with a scripting/macro facility for syntactic extensions that map into the core language. In practice, such extension facilities are either fully unconstrained (making invariants and machine support difficult) or limited to the object level (keeping the statement and theory levels fixed).

In this paper we develop a general methodology for extending MKM representation formats at the statement level. We show the utility (and indeed necessity) of statement-level extension by redesigning the OMDoc format into a minimal, regular core language (strict OMDoc) and an extension (pragmatic OMDoc) that maps into strict OMDoc.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [ABC+10]
    Ausbrooks, R., Buswell, S., Carlisle, D., Chavchanidze, G., Dalmas, S., Devitt, S., Diaz, A., Dooley, S., Hunter, R., Ion, P., Kohlhase, M., Lazrek, A., Libbrecht, P., Miller, B., Miner, R., Sargent, M., Smith, B., Soiffer, N., Sutor, R., Watt, S.: Mathematical Markup Language (MathML) version 3.0. W3C Recommendation, World Wide Web Consortium (W3C) (2010)Google Scholar
  2. [ASC06]
    Autexier, S., Sacerdoti-Coen, C.: A Formal Correspondence Between OMDoc with Alternative Proofs and the \({\overline{\lambda}\mu\tilde{\mu}}\)-Calculus. In: Borwein, J.M., Farmer, W.M. (eds.) MKM 2006. LNCS (LNAI), vol. 4108, pp. 67–81. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. [BC04]
    Bertot, Y., Castéran, P.: Coq’Art: The Calculus of Inductive Constructions. Springer (2004)Google Scholar
  4. [BCC+04a]
    Buswell, S., Caprotti, O., Carlisle, D., Dewar, M., Gaetano, M., Kohlhase, M.: The Open Math Standard, Version 2.0. Technical report, The Open Math Society (2004),
  5. [BCC+04b]
    Buswell, S., Caprotti, O., Carlisle, D.P., Dewar, M.C., Gaëtano, M., Kohlhase, M.: The Open Math standard, version 2.0. Technical report, The OpenMath Society (2004)Google Scholar
  6. [Chu40]
    Church, A.: A Formulation of the Simple Theory of Types. Journal of Symbolic Logic 5(1), 56–68 (1940)MathSciNetzbMATHGoogle Scholar
  7. [Gor88]
    Gordon, M.: HOL: A Proof Generating System for Higher-Order Logic. In: Birtwistle, G., Subrahmanyam, P. (eds.) VLSI Specification, Verification and Synthesis, pp. 73–128. Kluwer-Academic Publishers (1988)Google Scholar
  8. [HHP93]
    Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. Journal of the Association for Computing Machinery 40(1), 143–184 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  9. [Hor12]
    Horozal, F.: Logic translations with declaration patterns (2012),
  10. [IKR11]
    Iancu, M., Kohlhase, M., Rabe, F.: Translating the Mizar Mathematical Library into OMDoc format. Technical Report KWARC Report-01/11, Jacobs University Bremen (2011)Google Scholar
  11. [Koh06]
    Kohlhase, M.: OMDoc – An Open Markup Format for Mathematical Documents [version 1.2]. LNCS (LNAI), vol. 4180. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. [Koh08]
    Kohlhase, M.: Using \(\mbox\LaTeX\) as a semantic markup format. Mathematics in Computer Science 2(2), 279–304 (2008)zbMATHCrossRefGoogle Scholar
  13. [LK09]
    Lange, C., Kohlhase, M.: A Mathematical Approach to Ontology Authoring and Documentation. In: Carette, J., Dixon, L., Coen, C.S., Watt, S.M. (eds.) MKM 2009, Held as Part of CICM 2009. LNCS, vol. 5625, pp. 389–404. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. [NPW02]
    Nipkow, T., Paulson, L., Wenzel, M.: Isabelle/HOL — A Proof Assistant for Higher-Order Logic. Springer (2002)Google Scholar
  15. [ORS92]
    Owre, S., Rushby, J., Shankar, N.: PVS: A Prototype Verification System. In: Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 748–752. Springer, Heidelberg (1992)Google Scholar
  16. [Pau94]
    Paulson, L.: Isabelle: A Generic Theorem Prover. LNCS, vol. 828. Springer, Heidelberg (1994)zbMATHGoogle Scholar
  17. [PS99]
    Pfenning, F., Schürmann, C.: System Description: Twelf - A Meta-Logical Framework for Deductive Systems. In: Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI), vol. 1632, pp. 202–206. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  18. [Rab08]
    Rabe, F.: The MMT System (2008),
  19. [RK11]
    Rabe, F., Kohlhase, M.: A Scalable Module System (2011),
  20. [TB85]
    Trybulec, A., Blair, H.: Computer Assisted Reasoning with MIZAR. In: Joshi, A. (ed.) Proceedings of the 9th International Joint Conference on Artificial Intelligence, pp. 26–28 (1985)Google Scholar
  21. [Wen99]
    Wenzel, M.T.: Isar - A Generic Interpretative Approach to Readable Formal Proof Documents. In: Bertot, Y., Dowek, G., Hirschowitz, A., Paulin, C., Théry, L. (eds.) TPHOLs 1999. LNCS, vol. 1690, pp. 167–184. Springer, Heidelberg (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Fulya Horozal
    • 1
  • Michael Kohlhase
    • 1
  • Florian Rabe
    • 1
  1. 1.Computer ScienceJacobs University BremenGermany

Personalised recommendations